• Title/Summary/Keyword: deflection simulation

Search Result 300, Processing Time 0.033 seconds

Modeling and Analysis of a Multi Bossed Beam Membrane Sensor for Environmental Applications

  • Arjunan, Nallathambi;Thangavelu, Shanmuganantham
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.25-29
    • /
    • 2017
  • This paper presents a unique pressure sensor design for environmental applications. The design uses a new geometry for a multi bossed beam-membrane structure with a SOI (silicon-on-insulator) substrate and a mechanical transducer. The Intellisuite MEMS CAD design tool was used to build and analyze the structure with FEM (finite element modeling). The working principle of the multi bossed beam structure is explained. FEM calculations show that a sensing diaphragm with Mises stress can provide superior linear response compared to a stress-free diaphragm. These simulation results are validated by comparing the estimated deflection response. The results show that, the sensitivity is enhanced by using both the novel geometry and the SOI substrate.

Fabrication and Characterization of Thermally Actuated Bimorph Probe for Living Cell Measurements with Experimental and Numerical Analysis

  • Cho Young-Hak;Kang Beom-Joon;Hong Seok-Kwan;Kang Jeong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.297-309
    • /
    • 2006
  • This paper deals with a novel structure for single-cell characterization which makes use of bimorph micro thermal actuators combined with electrical sensor device and integrated microfluidic channel. The goal for this device is to capture and characterize individual biocell. Quantitative and qualitative characteristics of bimorph thermal actuator were analyzed with finite element analysis methods. Furthermore, optimization for the dimension of cantilevers and integrated parallel probe systems with microfluidic channels is able to be realized through the virtual simulation for actuation and the practical fabrication of prototype of probes. The experimental value of probe deflection was in accordance with the simulated one.

Study on the Optimum Injection Molding Technology for Transformer (절연변압기의 최적사출성형기술)

  • Kim O.R.;Lee S.Y.;Kim Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.577-578
    • /
    • 2006
  • In this paper, the rubber behavior was calculated for obtaining the optimal process condition which is for producing a transformer with a given performance. This study was carried out using the computer simulation of injection mold filling and packing simulations. In order to remove the crack of product, proper locations of the runner and cooling system configurations could be determined. Based on these results, the transformer is developed by injection molding and guidelines of part design, mold design and processing conditions are established. Finally, the cast savings, cycle time reduce and improvement of productivity will be obtained.

  • PDF

Track Seek Dynamics of HDD Suspension System Considering Air Bearing Effects (공기 베어링 효과를 고려한 HDD 서스펜션 시스템의 트랙탐색 동특성)

  • Kim, Jeong-Ju;Park, No-Yeol;Gang, Tae-Sik;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.198-205
    • /
    • 2001
  • Recently, almost all hard disk drives employ the rotary actuator system. The performance of an HDD depends on the accuracy and speed of tracking motion. We study the dynamics of head-suspension assembly during track seek. We develop the numerical analysis program to study the dynamic characteristics of HDD suspension system considering the air bearing effects. The track seek simulation by using the developed program helps to estimate the effect of the suspension vibration on the air bearing dynamics. We calculate the behaviour of the air bearing for the given track seek profile and calculate the positioning error during track seek process due to the lateral deflection of the suspension.

다구찌 기법을 활용한 자전거 핸들 바의 최적 설계

  • Lee, Hyeon-Gyeong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.223-228
    • /
    • 2015
  • In this paper, the study of the optimum design for a geometry of the handle bar to obtain a high stiffness and light weight is investigated, using EDISON simulation program. High stiffness and weight lightening are considered as the major performance indicators of the component of the bicycle. Four design factors and three levels of the design factors are selected for the structural optimization and experiments are designed using the orthogonal array of L9 by Taguchi method. We calculated SN ratio of larger-the-better and smaller-the-better characteristics from FEA results and analysed the effects of design factors on characteristics. We choosed the optimum level of design factors based on deflection and safety factor. Comparing the results of FE analysis with converted value of predicted SN ration, we made sure for reliability of Taguchi method and FE method for structural optimization.

  • PDF

An Experimental Study on the Deformation of Boron Doped Silicon Diaphragms due to the Residual Stress (붕소가 도핑된 실리콘 박막의 잔류응력으로 인한 변형에 관한 실험적 연구)

  • Yang, E.H.;Yang, S.S.;Ji, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.72-75
    • /
    • 1994
  • In this paper, a novel method to figure out the relative residual stress distribution along the depth of silicon diaphragms is presented Cantilevers with various thickness are fabricated by the time controlled etching method using EPW as an etchant. The boron concentration along the depth of the cantilevers is obtained by the TSUPREM IV simulation, and the etching time to get the proper thickness is calculated. By measuring deflections of the p+ silicon cantilevers the stress profile along the depth of diaphragm is calculated. The obtained stress profile is reasonable and useful to expect the deflection of cantilevers and the buckling of diaphragms.

  • PDF

Control of cambered web's lateral dynamics by a using steering guider (가이더를 이용한 Cambered Web의 사행거동 제어에 관한 연구)

  • Lee, Hyuk-Jong;Shin, Kee-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.688-693
    • /
    • 2001
  • It is almost impossible to have a straight web for processing in the continuous process systems. The cambered web usually causes the strip walking and damage during process. It is necessary to identify the lateral dynamics of the cambered web for the precise control of lateral behavior. In this paper, a dynamic model of the lateral behavior for a cambered web is developed by introducing the concept of steering angle equivalent to moment caused by the camber. This model can be extended to include terms associated with moment, induced by roller's tilting, web slippage, and shear force, etc. Using this model, a new feed-forward controller is proposed to enable the on-line camber estimation, which is difficult to be measured directly, and the prediction of lateral deflection caused by camber. Computer simulation study shows that the proposed controller successfully eliminates the effect of camber and has better control performance than that of the existing PID controller.

  • PDF

Vibration of Car Seat and Mannequin System II (자동차 시트 및 마네킹 시스템의 진동 II)

  • Kim, Seong-Keol;Kim, Joon-Hyun;Park, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.398-403
    • /
    • 2001
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in previous paper. Nonlinear and linear equations of motions were rederived for forced vibration, and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests, mannequin's head had a lot of problems, and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints, linear analyses were performed. New sets of linear spring and damping coefficients, and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance, indicating that this is a feasible method of modeling seated occupants.

  • PDF

A Study on the Tool for Dynamic Analysis of the Test Support system using Wind Tunnel Testing (풍동시험에서 사용하는 시험지지부의 동특성 해석용 툴에 관한 연구)

  • Park Tae-Min;Lee Kee-Seok;Hong Jun-Hee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.370-376
    • /
    • 2005
  • This paper is described the program algorithm which can easily estimate dynamics of test support system by using mathematica tool based on the finite element method. We can determine the geometry, dimensions of the test support system, through tool stated in this paper for a certain test conditions. As a result of computer simulation and manufactured test support system's experiment in oder to verify suggested program, the dynamics of the test support system was well correspondent each other.

  • PDF

Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure

  • Yu, Chang-Li;Feng, Ji-Cai;Chen, Ke
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.399-408
    • /
    • 2015
  • This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.