• Title/Summary/Keyword: deflection measurement

Search Result 225, Processing Time 0.027 seconds

A Study on the Measurement of Young's Modulus of Carbon Nano Tube (탄소 나노 튜브의 영 계수 측정에 관한 연구)

  • 이준석;최재성;강경수;곽윤근;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.682-685
    • /
    • 2003
  • In this paper, we propose the method to measure the Young's modulus of carbon nano tube which was manufactured by chemical vapor deposition. We also made the tungsten tip by electrochemical etching process and the carbon nano tube which was detangled through ultra-sonication with isopropyl alcohol was attached to the tungsten tip. This tip which was composed of tungsten tip and carbon nano tube can be used in Young's modulus measurement by applying DC voltage with counter electrode. The attachment process and measurement of the deflection of carbon nano tube was done under optical microscope.

  • PDF

Design of Digital Controllers with Self-Validating Intelligent Sensors (Self-Validating 지능형 센서를 사용한 디지털 제어기의 설계)

  • 나승유;배희종
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.51-54
    • /
    • 2000
  • We are concerned with processing methods of the measurement values of sensors in the control system. When some faults happen to sensor components, the measurement value of sensors cause the malfunction of the plant. So it is necessary to detect and reduce the influence of faults to control with reliability for the overall system. The sensor status must be always good for best demonstration of the controller performance. A self-validating sensor detects the sensor state from the measurement value, reconstruct a soft sensor and can improve reliability of the sensor. If sensor faults, the sensor is detected and reconstructed with the best estimate from its correlation to other sensors and historical data. It is applied to the control of a flexible link system with the sensor fault problems in the light sensor module for position to show the applicability. In this paper, we propose a digital controller which reduces deflection of the moving set-point by reconstructing output of a sensor when the sensor fault is detected.

  • PDF

Relationship between crack width and deflection in reinforced concrete beam (철근콘크리트 보의 균열폭과 처짐 관계)

  • Lee, Seung-Bae;Kim, Kang-Su;Kang, Ju-Oh;Choi, Jin-Young;Park, Mi-Yeung;Kim, Sang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.293-296
    • /
    • 2008
  • The member deflection is one of the most important considerations for the serviceability evaluation of reinforced concrete (RC) structures, and the concept of the effective moment of inertia has been generally used for its estimation. However, the actual service load applied on an existing RC beam may not be easily obtained, for which the estimation of beam deflection by existing methods can be difficult work. Therefore, based on the close relationships between cracks and deflection in a RC beam, this study proposed a method to estimate the deflection of RC beams directly from the condition of cracks not using the actual loads acting on the member as its input data. The proposed method extensively utilized the relationships among sums of crack widths, average strains, and curvatures, and modification factors obtained from regression analysis were also introduced to improve its accuracy. The deflections of members were successfully estimated by the proposed method independent from applied loads, which was also easy to apply compared to the existing methods based on the effective moment of inertia. This new method, however, has limitations in its applicability in that it is less accurate than the existing methods because the magnitude of acting load is not involved in the estimation process of member deflection, and that it requires the measurement of crack widths along the whole length of a member.

  • PDF

Fabrication and Mechanical Properties of Carbon Nanotube Probe for Ultrasmall Force Measurement in Biological Application (생물학적 초미세력 검출을 위한 탄소나노튜브 프로브의 제작 및 기계적 특성 검출)

  • Kwon, Soon-Geun;Park, Hyo-Jun;Lee, Hyung-Woo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.140-147
    • /
    • 2008
  • In this study, a carbon nanotube probe (CNT probe) is proposed as a mechanical force transducer for the measurement of pico-Newton (pN) order force in biological applications. In order to measure nantube's displacement in the air or liquid environment, the fabrication of a CNT probe with tip-specific loading of fluorescent dyes is performed using tip- specific functionalization of the nanotube and chemical bonding between dyes and nanotube. Also, we experimentally investigated the mechanical properties of the CNT probe using electrostatic actuation and fluorescence microscope measurement. Using fluorescence measurement of the tip deflection according to the applied voltage, we optimized the bending stiffness of the CNT probe, therefore determined the spring constant of the CNT probe. The results show that the spring constant of CNT probes is as small as 1 pN/nm and CNT probes can be used to measure pN order force.

Implementation of an Interrogator for the Operationand Measurement of Fiber Bragg Grating Multiplexing Sensor Probes (FBG 다중화 센서 탐촉자 구동 및 측정을 위한 인터로게이터 설계 제작)

  • Kim, Ji-Dea;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-205
    • /
    • 2014
  • This research focuses on the development of an interrogator that operates and measures fiber Bragg grating(FBG) multiplexing sensor probes for accurate-measurement of the blade deflection in a wind power generator. We designed and fabricated an optical source and spectrum module for the interrogator. Additionally, we verified the wavelength repeatability within 0.001 nm and the wavelength stability within 1 pm of the optical source, and we experimentally determined that the wavelength scanning range was about 44.4 nm. The FBG sensor with 2 nm resolution can be extended to a performance-efficient system that measures more than 20 sensors. The implemented interrogator has 0.141 nm wavelength variations corresponding to an ambient temperature range of $0^{\circ}C$ to $70^{\circ}C$. The measurement error can be easily reduced by employing a temperature compensation algorithm. In this study, we quantitatively confirmed the accuracy and operating stability of the interrogator.

Development of Modeling Method of Hysteretic Characteristics for Accurate Load Measurement of Trucks (상용차량의 정확한 하중 측정을 위한 겹판스프링의 이력특성 모델링 기법 개발)

  • Seo, M.K.;Batbayar, E.;Shin, H.Y.;Lee, H.Y.;Ko, J.I.
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.38-45
    • /
    • 2021
  • In recent years, the demand for an onboard scale system which can directly monitor load distribution and overload of vehicles has increased. Depending on the suspension type of the vehicle, the onboard scale system could use different types of sensors, such as, angle sensors, pressure sensors, load cells, etc. In the case of a vehicle equipped with leaf spring suspension system, the load of the vehicle is measured by using the deflection or displacement of the leaf spring. Leaf springs have hysteresis characteristics that vary in displacement depending on the load state. These characteristics cause load measurement errors when moving or removing cargoes. Therefore, this study aimed at developing an onboard scale device for cargo vehicles equipped with leaf springs. A sectional modeling method which can reduce measurement errors caused by hysteresis characteristics was also proposed.

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

Measurement of Infinitesimal Delaminaton Thickness by Echo Amplitude of Ultrasonic Wave (초음파의 에코 높이를 이용한 미소(微小) 박리(剝離) 두께 측정에 관한 연구)

  • Han, E.K.;Jang, K.Y.;Hwang, B.I.;Lee, B.S.;Park, I.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 1993
  • If the infinitesimal delamination exists and the two waves can hardly be distinguished from each other on account of being much closer, we cannot measure the thickness of delamination by the time difference method. On this study, we calculated the thickness of infinitesimal delamination model by means of measuring echo height due to the deflection of material particles and utilized Newton Ring for optical measurement as a delamination model. From the result of Newton Ring expressed in the delamination model, we can calculate the infinitesimal delamination thickness up to $0.2{\sim}0.3{\mu}m$ due to the difference of acoustic impedance by the ratio of the echo height to the total reflection.

  • PDF

A Study on the Optical Measurement of Torstional Stresses (순수 비틀림 응력의 광학적 측정법에 대한 연구)

  • ;Choi, Sun-Ho
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 1977
  • It is well known fact that there is a theoretical analogous relation ship in terms of differential equation between the stress distribution of a bar under pure torsional moment and the deflection of a membrane subjected to a uniform pressure. This relationship has been applied to the experimental determination of torsional stresses with troublesome and elaborative measuring procedure since Griffith's invention of the soap-film apparatus. In this paper, the soap-film was replaced by a highly polished steel plate and whole visualable deflectional contour-line-map was able to obtain by using Michelson Interferometer with Ne-He Gas Laser lignt source enabling to determine the stress distribution in the vicnity of the symmetrical inner-boundary in a section. Experimental results were satisfactory and the margin of error in the measurement was lower than 1%.

Obtaining Design Characteristics of Lever-linked Roberval Mechanism through Weighing Method (무게측정방식에 따른 Lever-linked Roberval Mechanism의 설계특성)

  • An, Ji Yun;Ahn, Jung Hwan;Lee, Gil Seung;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.336-341
    • /
    • 2020
  • The deflection and null balance methods are used for precision force measurement in the precision industry. Since both methods are based on deformation, the performance of the load cell mechanism is important. In this study, the design variables were obtained via the free body diagram of a lever-linked Roberval mechanism (combined with a flexible hinge link and a Roberval mechanism), and the design characteristics were analyzed according to the weight method. Based on the design characteristics, the optimal design was conducted according to the weight method and FEM was used to verify its reliability.