• Title/Summary/Keyword: deflection evaluation

Search Result 311, Processing Time 0.024 seconds

Evaluation on Flexural Performance for Light-Weight Composite Floor with Sound Reduction System (층간소음 대응형 경량합성바닥판에 대한 휨성능 평가)

  • Bae, Kyu Woong;Lee, Sang Sup;Park, Keum Sung;Heo, Byung Wook;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.241-250
    • /
    • 2014
  • The purpose of this study is to propose structural technologies on the light-weight composite floor systems in the unit modular and to evaluate structural performance of the composite floor through flexural experiments. The flexural experiments were carried out on total nine specimens(each three type in shape) using steel flat deck and truss deck. From the results of test, all specimens showed the same failure patterns which exhibited deflection at the center of the specimens due to flexural deformation before concrete crushing at the upper of specimens. Also, we know that the proposed floors satisfied in serviceability and would be safe sufficiently. The ratio of experimental yield load by theoretical nominal load was the distribution of 0.86 to 1.27 with an average 1.04. Coefficient of variation in distribution showed good agreement.

Model Tests of Pile Groups in Sand (실내모형실험을 통한 군말뚝기초의 거동분석)

  • 정상훈;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.193-205
    • /
    • 2001
  • In this study the behavior of pile groups is investigated experimentally. Special attention is given to the load transfer characteristics of pile groups and to the evaluation of the group effects under vertical and horizontal loadings. In the laboratory experiments, vertical and lateral loadings were imposed on model piles in sand. Model piles made of PVC embedded in Joomoonjin sand were used in this study. Pile arrangements($2\times2,\; 3\times3$) and pile spacings(2.5D, 5.OD, 7.5D) were considered. Load-transfer curves(t-z, q-z and p-y curves), load-deflection curves and group interaction factors were obtained from the experimental results. The group interaction factors under both vertical and horizontal loadings were proposed for the cases of $2\times2\; and\; 3\times3$ pile groups with varying ratios of pile spacings. p-multipliers in this study were found for the individual piles in $2\times2\; and\; 3\times3$ pile groups.

  • PDF

Experiments on reinforced concrete beam-column joints under cyclic loads and evaluating their response by nonlinear static pushover analysis

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, Rolf;Vaze, K.K.;Ghosh, A.K.;Kushwaha, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.99-117
    • /
    • 2010
  • Beam-column joints are the key structural elements, which dictate the behavior of structures subjected to earthquake loading. Though large experimental work has been conducted in the past, still various issues regarding the post-yield behavior, ductility and failure modes of the joints make it a highly important research topic. This paper presents experimental results obtained for eight beam-column joints of different sizes and configuration under cyclic loads along with the analytical evaluation of their response using a simple and effective analytical procedure based on nonlinear static pushover analysis. It is shown that even the simplified analysis can predict, to a good extent, the behavior of the joints by giving the important information on both strength and ductility of the joints and can even be used for prediction of failure modes. The results for four interior and four exterior joints are presented. One confined and one unconfined joint for each configuration were tested and analyzed. The experimental and analytical results are presented in the form of load-deflection. Analytical plots are compared with envelope of experimentally obtained hysteretic loops for the joints. The behavior of various joints under cyclic loads is carefully examined and presented. It is also shown that the procedure described can be effectively utilized to analytically gather the information on behavior of joints.

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.

An Experimental Study on the Mechanical Properties of Porous Concrete Using Coal Ash and Polymer (석회석 골재를 사용한 강섬유보강 포러스콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Jang, Young-Il;Jeon, Heum-Jin;Lee, Taek-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.685-688
    • /
    • 2008
  • Concrete is strong on the compressive property, but weak on the tensile and flexural properties. To improve these problems, the reinforcing bar is used in concrete. But porous concrete with steel fiber has a weak point when exposed to air, because porous concrete has the vast continuous void on its inside and steel fiber is easily rusted by air. For these reasons, this study investigated the void ratio, compressive strength, bending strength and bending toughness as steel fiber mixing ratio and target void ratio. From test results, actual void ratio and strength properties increased as the mixing ratio of steel fiber increase. In case the mixing ratio of steel fiber over the fixed ratio, strength is decreased. And from the toughness evaluation, compared to the porous concrete which isn't mixed with steel fiber, the deflection variation efficiency is remarkably improved. Consequently we can confirm the possibility of porous concrete with steel fiber for the secondary product and pavement material to improve strength and bending resistance efficiency.

  • PDF

Evaluation on Flexural Behavior of Hybrid Beams with Rigid Joint Connecting Steel and Precast Concrete Elements (강재 보-PC 보가 강접합 연결된 하이브리드 보의 휨 거동 평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • A hybrid precast concrete beam system with a simple rigid connection was proposed to compensate the limitations and shortcomings of the conventional bolt connection associated with the H-beams embedded into concrete beams. Three beam specimens with fixed both ends were tested under one-point top cyclic loading to explore the effectiveness of the developed hybrid beam system in transferring externally applied flexure to a column. The main parameter considered was the length ($L_s$) of H-beam, which was selected to be $0.25L_I$, $0.5L_I$, and $1.0L_I$, where $L_I$ is the distance from the support to the point of inflection. All beam specimens showed a better displacement ductility ratio than the reinforced concrete beams with the same longitudinal reinforcement index, indicating that the cyclic load-deflection curve and ductility were insignificantly affected by $L_s$. The continuous strain distribution along the beam length and the prediction of the ultimate load based on the collapse mechanism ascertained the structural adequacy of the developed rigid connection.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Development of Multi-functional Centerless Grinding System with 600 mm Wide Grinding Wheels (600 mm 급 다기능 광폭 센터리스 연삭시스템 개발)

  • Oh, Jung Soo;Cho, Chang Rae;Tsukishima, Hidehiro;Cho, Soon Joo;Park, Chung Hong;Oh, Jeong Seok;Whang, In Bum;Lee, Won Jae;Kim, Seok Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1129-1137
    • /
    • 2013
  • We report a centerless grinding machine which can perform multi-function with 600 mm wide grinding wheels. By increasing manufacturing area, long workpiece such as camshaft and steering shaft, is allowed to grind more quickly, compared with cylindrical grinding system. In this paper, the design of centerless grinding machine puts emphasis on symmetry to exploit the thermal stability. Results of finite element analysis shows that the difference of the structural deflection in the front and rear guideways is less than $1.5{\mu}m$ due to symmetric design. The difference is less than $3.0{\mu}m$, even though the thermal deformation is considered. According to the performance evaluation, the radial error motion of the G/W spindle, which is measured by applying Donaldson Ball Reversal, is about 1.1${\mu}m$. The yaw error of the G/W slide is improved from 2.1 arcsec to 0.5 arcsec by readjusting the slide preload and ball screw.

Evaluation of correlation between Strain mudulus (Ev2) and Deformation modulus (ELFWD) Using Cyclic Plate loading Test and LFWD (소형 FWD와 반복평판재하시험에서의 변형계수(Ev2)와의 상관관계 평가)

  • Choi, Chan-Yong;Lee, Sung Hyok;Bae, Jae Hun;Park, Doo Hee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.33-41
    • /
    • 2011
  • In this study, it conducted a compaction quality control test in 29 domestic construction sites and investigated the relationship between classical method (Cyclic Plate bearing test) and LFWD test with subgrade materials which consist in sandy soil and gravelly soil. According to the test results, the most of soil types were mostly satisfied with specification criterion and gravelly soils were easily satisfied with values over 3 times greater than specification criterion. In term of the correlation relation of soil modulus with the two compaction quality control test methods, it is shown that the sandy soil types were a good correlation, while gravelly soil types with a high stiffness materials were indicated less correlation. After the compensation for stress condition, a linear regression for elastic modulus were higher correlation.

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.