• Title/Summary/Keyword: deflection and stress analysis

Search Result 359, Processing Time 0.028 seconds

Parameter Analysis for Design of Pretension Girder Bridge for Urban Maglev Transit (도시형 자기부상열차 프리텐션 거더교의 설계변수 분석)

  • Lee, Jae-Ho;Kim, Do-Hak;Kim, Seung-Hyun;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2016
  • Parameter analysis of a pretension girder bridge for urban maglev transit was performed to identify the main design parameters and their effect. Girder deflection at mid-span is the most important design criteria of urban maglev transit. Therefore, concrete compressive strength, girder height, girder length, and unbonded tendon length were selected as the design parameters that relate to girder deflection. In addition, tendon layout and unbonded tendon ratios were also considered as design parameters to control the top stress of the pretension girder section at the support. The analysis results show that both the girder height and length are dominant design parameters governing girder deflection, more important than compressive strength and unbounded tendon length. And, sensitivity analysis makes this study suggest design weight value. In terms of stress, a tendon layout that can satisfy the unbounded tendon rule requires an additional tendon or rebar at the upper section to control the tensile stress on top of the section. Therefore, to improve feasibility and constructability in the future, an enhanced unbonded tendon rule considering the load characteristics of the urban maglev system should be studied.

A Novel Methodology of Improving Stress Prediction via Saint-Venant's Principle (생브낭의 원리를 이용한 응력해석 개선)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a methodology is proposed to improve the stress prediction of plates via Saint Venant's principle. According to Saint Venant's principle, the stress resultants can be used to describe linear elastic problems. Many engineering problems have been analyzed by Euler-Bernoulli beam(E-B) and/or Kirchhoff-Love(K-L) plate models. These models are asymptotically correct, and therefore, their accuracy is mathematically guaranteed for thin plates or slender beams. By post-processing their solutions, one can improve the stresses and displacements via Saint Venant's principle. The improved in-plane and out-of-plane displacements are obtained by adding the perturbed deflection and integrating the transverse shear strains. The perturbed deflection is calculated by applying the equivalence of stress resultants before and after post-processing(or Saint Venant's principle). Accuracy and efficiency of the proposed methodology is verified by comparing the solutions obtained with the elasticity solutions for orthotropic beams.

Analysis of Shear Damage Behaviour of Reinforced Concrete Beams using Modified Compression Field Theory (철근콘크리트보의 전단피로손상거동에 대한 수정압축장이론을 이용한 해석기법)

  • 한승환;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.552-557
    • /
    • 1997
  • In this study, a quantitative analysis technique for the damage process of reinforced concrete beams under repeated shear loading is proposed, which can express the progressively increasing strain and stiffness reduction. The analysis technique is mainly based on the modified compression field theory and scalar damage concept. which describe the strain and stress configuration in the shear zone by considering the 2-dimensional effect, and express the degradation of principal compressive strut by cyclic strain increment, secant modulus decrement, and modifying the parabolic stress strain relationship. The analysis of the response of RC beams under repeated shear-flexure loading has been carried out and compared with the experimental results. The present theory may efficiently be used to evaluate the deflection and strain accumulation under repeated loadings.

  • PDF

Finite Difference Analysis of Safe Load and Critical Time in a Four-Parameter Viscoelastic Column

  • Shin, Jong-Gye;Lee, Jae-Yeul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.80-87
    • /
    • 1996
  • A creep-buckling analysis is studied for a simply-supported viscoelastic column. The fluid-type four-parameter model is employed because of its general applicability to creep materials. Using the imperfection-based incremental approach, a nonlinear load deflection equation is derived. Safe load and critical (or life) time which characterize the stability of the viscoelastic column are obtained mathematically and interpreted physically. A finite difference algorithm is applied to solve the second-order differential equation of the viscoelastic stress-strain relation. Numerical calculation has been made and discussed far a SUS316 stainless steel column.

  • PDF

Structural Analysis of Tension Controller Spring (텐션 컨트롤러 스프링의 구조해석)

  • Lee, Jong-Sun;Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • In this research, structural analysis was conducted by applying ANSYS commercial code in order to evaluate deflection quantitatively when each weight of tension controllers was centered and weights and moments on a controller controlling tension amounts was varied in a machinery manufacturing flexible flat cable. Based on the numerical structure analysis, stress, strain and amounts of maximum deformation were obtained and investigated structural validity and was reflected on design of the controller.

Comparison of stress analysis tools for ocean vertical pile under environmental loads (해양 수직 파일(Vertical Pile)에 작용하는 환경 하중하의 응력 해석 기법 비교)

  • 조철희;김병환;김두홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.121-127
    • /
    • 2001
  • To investigate the stability and integrity of offshore structures, it is necessary to estimates the significant ocean environmental loadings. They include hydrostatic pressure, wind, wave, current, tide, ice, earthquake, temperature, marine growth and scouring. Waves are of major importance among them because of the large forces acting on submerged parts of the structure caused by accompanying water motions. For the comparison of stress and deflection analysis tools, a vertical pile is applied under environmental loads. The analysis is concerned with SACS(Structural Analysis Computer System), ANSYS and C program. SACS and C program have nearly the same results but not ANSYS. This study shows the comparison of results obtained from 3 different approaches.

  • PDF

A STRESS ANALYSIS OF FIXED PROSTHESES WITH VARIOUS ORIENTATION OF NONRIGID CONNECTOR (비고정성 연결장치의 위치에 따른 고정성 보철물의 응력분석)

  • Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.85-99
    • /
    • 1996
  • Finite element models were constructed to analyze the mechanical behavior of a three unit fixed partial denture (FPD) with a 2nd premolar and 2nd molar abutment either employing a rigid and nonrigid connector. Gap elements were used to model the clearance space of the nonrigid connector. 1. High stress was generated in the FPD and supporting abutment around the rigid connector. 2. The pattern of stress and deflection is very similar between vertically and 20 degree mesially tilted nonrigid connector at the distal aspect of premolar abutment. 3. FPD with an inverted nonrigid connectors exhibited the worst undesirable mechanical stress states and deformations. 4. Nonrigid connector of normal orientation transmit the load to the abutment tooth, but inverted connector doesn't transmit the force.

  • PDF

Study on the Deflection Characteristics of Rotating Drive by Weight Compensation (하중 보상을 이용한 회전 구동부의 처짐 특성 연구)

  • Kim, Hyun-Sik
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.790-795
    • /
    • 2018
  • In this study, we analyzed the structural safety and vibration characteristics of rotational drive in 3D CT scan equipment using finite element analysis. The analysis results showed a safety factor of 9.2 and a left and right vertical deflectional deviation of 0.24mm from the maximum equivalent stress. After applying weight compensation of 27.7kgf, the structural analysis reduced the safety factor to 7.6, but the deflectional deviation of the left and right structure was reduced to 0mm. Also, we presented the optimum design of rotational drive through the vibration analysis.

The Analytical Study on Behavior of two-spans beam with Steel Fiber (강섬유를 혼입한 2경간 연속보의 거동에 관한 해석적 연구)

  • 곽계환;고성재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.77-82
    • /
    • 2002
  • Recently, adapt cases of concrete structure are increasing according to structural largeness and variety. We energetically continue to study empirical research about Steel Fiber but analytic research of Two-spans Beam With Steel Fiber to model real structure is just beginning stage. This study will suggest analytic algorithm of Two-spans Beam With Steel Fiber by comparing and analyzing deflection and strain of Two-spans Beam With Steel Fiber after we develop Nonlinear Analysis Program considering edge stress analysis.

  • PDF

A Study on the Bond Behavior of Reinforced Concrete Beam (철근(鐵筋)콘크리트 보의 부착거동(附着擧動)에 관한 연구(硏究))

  • Lee, Bong-Hak;Hong, Chang-Woo;Lee, Joo-Hyung;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.87-95
    • /
    • 1998
  • Cracking is considered to be one of the important factors in determining the durability of reinforced concrete structures. When the bending stress exceeds the modulus of rupture of the concrete, cracking form along the length of members. The total load is transferred across these cracks by the reinforcement, but the concrete between cracks is still capable of carrying stresses due to the bond between steel and concrete. This phenomenon is called the tension stiffening effect. The tension stiffening effect is affected by many variables, such as the bond stress, strength of concrete, interrocking of aggregate, type of steel, and dowel action of steel. Also, this tension stiffening effect is usually quite significant in beams under service loading, and must be taken into account in the calculation of deflection and crack widths. In this study, the experiment was carried out on types of specimen, strength of concrete, and steel ratio and finite element analysis were compared in terms of load-deflection relationship, crack pattern.

  • PDF