• 제목/요약/키워드: deficient

검색결과 2,097건 처리시간 0.028초

Deletion of the Lmna Gene Induces Growth Delay and Serum Biochemical Changes in C57BL/6 Mice

  • Ruan, J.;Liu, X.G.;Zheng, H.L.;Li, J.B.;Xiong, X.D.;Zhang, C.L.;Luo, C.Y.;Zhou, Z.J.;Shi, Q.;Weng, Y.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권1호
    • /
    • pp.123-130
    • /
    • 2014
  • The A-type lamin deficient mouse line ($Lmna^{-/-}$) has become one of the most frequently used models for providing insights into many different aspects of A-type lamin function. To elucidate the function of Lmna in the growth and metabolism of mice, tissue growth and blood biochemistry were monitored in Lmna-deficient mice, heterozygous ($Lmna^{+/-}$) and wide-type ($Lmna^{+/+}$) backcrossed to C57BL/6 background. At 4 weeks after birth, the weight of various organs of the $Lmna^{-/-}$, $Lmna^{+/-}$ and $Lmna^{+/+}$ mice was measured. A panel of biochemical analyses consisting of 15 serological tests was examined. The results showed that Lmna deficient mice had significantly decreased body weight and increased the ratio of organ to body weight in most of tissues. Compared with $Lmna^{+/+}$ and $Lmna^{+/-}$ mice, $Lmna^{-/-}$ mice exhibited lower levels of ALP (alkaline phosphatase), Chol (cholesterol), CR (creatinine), GLU (glucose), HDL (high-density lipoprotein cholesterol) and higher levels of ALT (alanine aminotransferase) (p<0.05). $Lmna^{-/-}$ mice displayed higher AST (aspartate aminotransferase) values and lower LDL (lowdensity lipoprotein cholesterol), CK-MB (creatine kinase-MB) levels than $Lmna^{+/+}$ mice (p<0.05). There were no significant differences among the three groups of mice with respect to BUN (blood urea nitrogen), CK (creatine kinase), Cyc C (cystatin C), TP (total protein), TG (triacylglycerols) and UA (uric acid) levels (p>0.05). These changes of serological parameters may provide an experimental basis for the elucidation of Lmna gene functions.

Caspase-1 Independent Viral Clearance and Adaptive Immunity Against Mucosal Respiratory Syncytial Virus Infection

  • Shim, Ye Ri;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • 제15권2호
    • /
    • pp.73-82
    • /
    • 2015
  • Respiratory syncytial virus (RSV) infection is recognized by the innate immune system through Toll like receptors (TLRs) and retinoic acid inducible gene I. These pathways lead to the activation of type I interferons and resistance to infection. In contrast to TLRs, very few studies have examined the role of NOD-like receptors in viral recognition and induction of adaptive immune responses to RSV. Caspase-1 plays an essential role in the immune response via the maturation of the proinflammatory cytokines IL-$1{\beta}$ and IL-18. However, the role of caspase-1 in RSV infection in vivo is unknown. We demonstrate that RSV infection induces IL-$1{\beta}$ secretion and that caspase-1 deficiency in bone marrow derived dendritic cells leads to defective IL-$1{\beta}$ production, while normal RSV viral clearance and T cell responses are observed in caspase-1 deficient mice following respiratory infection with RSV. The frequencies of IFN-${\gamma}$ producing or RSV specific T cells in lungs from caspase-1 deficient mice are not impaired. In addition, we demonstrate that caspase-1 deficient neonatal or young mice also exhibit normal immune responses. Furthermore, we find that IL-1R deficient mice infected with RSV exhibit normal Th1 and cytotoxic T lymphocytes (CTL) immune responses. Collectively, these results demonstrate that in contrast to TLR pathways, caspase-1 might not play a central role in the induction of Th1 and CTL immune responses to RSV.

Isolation and characterization of induced disease resistance (ISR)-deficient mutants of a biocontrol bacterium Pseudomonas chlororaphis O6.

  • Han, Song-Hee;Cho, Baik-Ho;Kim, Young-Cheol
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.101.1-101
    • /
    • 2003
  • Lipopolysaccharide, siderophore, and cyclic dipeptide have been shown to be necessary for ISR induction by pseudomnads. However, there is no report on cloning of genes or generating specific mutants involving in ISR activity. A biological control bacteium P. chlororaphis O6 induces resistance to Erwinia carotovora subsp. carotovara SCCI in tobacco and induces drought resistance in Arabidopsis. To isolate genes involved in ISR activity and induction of drough resistance of O6, we constructed Tn5 mutants and were used to screen for ISR activity and drought resistance activity using microtiter assay with tobacco and Arabidopsis. Thirty-three ISR-deficient mutants were selected, and the nine ISR-deficient mutants were also lost activity of drought resistance. The flanking sequence analysis of the ISR and drought resistance-deficient mutants showed that a gacS gene encoding a two-component sensor kinase, and a mce gene encoding a protein involved in mycobacterial cell entry were mutated. The flanking sequence of each Tn5 mutant altered ISR activity is currently under investigation. These results indicate that gacS and mce are important genes in induction of ISR activity and drought resistance of P. chlororaphis O6. Our works will open opportunities for identification of bacterial genes or traits that are involved in ISR activity and induced drought resistance of P. chlororaphis O6.

  • PDF

Bioavailability of Iron-fortified Whey Protein Concentrate in Iron-deficient Rats

  • Nakano, Tomoki;Goto, Tomomi;Nakaji, Tarushige;Aoki, Takayoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권7호
    • /
    • pp.1120-1126
    • /
    • 2007
  • An iron-fortified whey protein concentrate (Fe-WPC) was prepared by addition of ferric chloride to concentrated whey. A large part of the iron in the Fe-WPC existed as complexes with proteins such as ${\beta}$-lactoglobulin. The bioavailability of iron from Fe-WPC was evaluated using iron-deficient rats, in comparison with heme iron. Rats were separated into a control group and an iron-deficiency group. Rats in the control group were given the standard diet containing ferrous sulfate as the source of iron throughout the experimental feeding period. Rats in the iron-deficiency group were made anemic by feeding on an Fe-deficient diet without any added iron for 3 wk. After the iron-deficiency period, the iron-deficiency group was separated into an Fe-WPC group and a heme iron group fed Fe-WPC and hemin as the sole source of iron, respectively. The hemoglobin content, iron content in liver, hemoglobin regeneration efficiency (HRE) and apparent iron absorption rate were examined when iron-deficient rats were fed either Fe-WPC or hemin as the sole source of iron for 20 d. Hemoglobin content was significantly higher in the rats fed the Fe-WPC diet than in rats fed the hemin diet. HRE in rats fed the Fe-WPC diet was significantly higher than in rats fed the hemin diet. The apparent iron absorption rate in rats fed the Fe-WPC diet tended to be higher than in rats fed the hemin diet (p = 0.054). The solubility of iron in the small intestine of rats at 2.5 h after ingestion of the Fe-WPC diet was approximately twice that of rats fed the hemin diet. These results indicated that the iron bioavailability of Fe-WPC was higher than that of hemin, which seemed due, in part, to the different iron solubility in the intestine.

식이 철 수준과 커피 섭취가 흰쥐의 산화스트레스와 항산화효소 활성에 미치는 영향 (Effect of Dietary Iron and Coffee Intake on Oxidative Stress and Antioxidative Enzyme Activities of Rats)

  • 김혜영;정현선
    • Journal of Nutrition and Health
    • /
    • 제35권9호
    • /
    • pp.919-925
    • /
    • 2002
  • Iron deficiency is a severe nutritional problem in the world. Coffee intake of the people is increasing every year and it can increase the loss of several essential body minerals including iron. Either iron deficiency or coffee intake may increase the oxidative stress of the body. However, the effect of iron deficiency and/or coffee intake on peroxidation have not been studied much. Therefore, the aim of this study was to investigate the effect of coffee intake on oxidative stress and antioxidative enzyme activities of iron-deficient rats. Forty-eight male rats of Sprague-Dawley strain were divided into two groups by dietary iron levels. Iron deficient group were fed 5 ppm iron diet and iron-sufficient group were fed 50 ppm iron diet. Each iron group were divided into three sub-groups by coffee levels (0%, 1%, 4%) included in the experimental diet. The experimental diets were fed for 4 weeks. The hemoglobin level was significantly low in iron deficient group and the level was exacerbated by high coffee intake. The malondialdehyde concentration of the plasma and liver were not affected by iron or coffee level in this study. However, plasma aspartate aminotransferase and alanine aminotransferase, the indicator of the liver damage, were increased by high coffee intake. The erythrocyte and liver superoxide dismutase (SOD) activities were elevated in iron deficient groups. Coffee intake increased erythrocyte SOD activity in iron sufficient groups. Glutathione peroxidase and catalase activities were not influenced much by either iron or coffee intake. In conclusion, high coffee intake in iron deficiency may not only increase the anemia symptoms, but also may increase the oxidative stress of the body.(Korean J Nutrition 35(9) : 919~925, 2002)

Protective effect of p53 in vascular smooth muscle cells against nitric oxide-induced apoptosis is mediated by up-regulation of heme oxygenase-2

  • Kim, Young-Myeong;Choi, Byung-Min;Kim, Yong-Seok;Kwon, Young-Guen;Kibbe, Melina R.;Billiar, Timothy R.;Tzeng, Edith
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.164-169
    • /
    • 2008
  • The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygen-ase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.

고 칼슘 섭취가 철이 부족한 성장기 흰쥐의 철 이용성과 뼈 성장에 미치는 영향 (The Effect of Excess Calcium on the Iron Bioavailability and Bone Growth of Marginally Iron Deficient Rats)

  • 장순옥;김기대;이성현
    • Journal of Nutrition and Health
    • /
    • 제37권8호
    • /
    • pp.645-654
    • /
    • 2004
  • This study examined the effect of excess calcium (Ca) on the iron (Fe) bioavailability and bone growth of marginally Fe deficient animals. Two groups of weanling female SD rats were fed either normal Fe (35 ppm) or Fe deficient diet (8 ppm) for 3 weeks. Then each group of animals were assigned randomly to one of three groups and were fed one of six experimental diets additionally for 4 weeks, containing normal (35 ppm) or low (15 ppm) Fe and one of three levels of Ca as normal (0.5%), high (1.0%), or excess (1.5%). Feces and urine were collected during the last 3 days of treatment. After sacrifice blood, organs, and femur bone were collected for analysis. Final body weight and average food intake were not affected by either the levels of dietary Ca or Fe. Low Fe diet significantly reduced the level of serum ferritin, however, for Hb, Hct, and TIBC no difference was shown than those in the normal Fe group. TIBC increased slightly by high and excess Ca intake in low Fe groups. For both normal and low Fe groups, high and excess Ca intakes reduced the apparent absorption of Fe and Fe contents of liver significantly (p < 0.05). Calcium contents in kidney and Femur of rats that were fed high and excess levels of Ca were significantly greater than those of normal Ca groups. However, weight, length, and breaking force of the bone were not affected by increased Ca intakes. Both in control and low Fe groups, high and excess intakes of Ca decreased the apparent absorption of Ca. These results indicate that the excess intakes of calcium than the normal needs would be undesirable for Fe bioavailability and that the adverse effects be more serious in marginally iron deficient growing animals. In addition bone growth and strength would not be favorably affected by high Ca intakes, though, the long term effect of increased Ca contents in bone requires further examination.

Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium

  • Xu, Danfeng;Jia, Zongxiao;Zhang, Lijuan;Fu, Shuilin;Gong, Heng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.753-761
    • /
    • 2020
  • To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct high-yielding 1,3-propanediol-producing K. pneumoniae strain.

Neonatal indirect hyperbilirubinemia and glucose-6-phosphate dehydrogenase deficiency

  • Isa, Hasan M.;Mohamed, Masooma S.;Mohamed, Afaf M.;Abdulla, Adel;Abdulla, Fuad
    • Clinical and Experimental Pediatrics
    • /
    • 제60권4호
    • /
    • pp.106-111
    • /
    • 2017
  • Purpose: This study aimed to determine the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among infants with neonatal indirect hyperbilirubinemia (NIH); compare G6PD-deficient and G6PD-normal patients regarding hyperbilirubinemia and need for exchange transfusions (ET); and assess risk factors for ET and kernicterus. Methods: This is a case-control retrospective study. Medical records of NIH patients admitted to the Pediatric Department, Salmaniya Medical Complex, Bahrain, between January 2007 and June 2010 were reviewed. Data on sex, age at presentation, hospitalization duration, need for ET, hemoglobin (Hb) level, reticulocyte count, direct Coombs test, serum total and indirect bilirubin levels, thyroid function, blood and urine cultures, G6PD status, and blood groups were collected and compared between the G6PD-deficent and G6PD-normal patients. Results: Of 1,159 NIH patients admitted, 1,129 were included, of whom 646 (57%) were male. Among 1,046 patients tested, 442 (42%) were G6PD deficient, 49 (4%) needed ET, and 11 (1%) had suspected Kernicterus. The G6PD-deficient patients were mainly male (P<0.0001), and had lower Hb levels (P<0.0001) and higher maximum bilirubin levels (P=0.001). More G6PD-deficient patients needed ET (P<0.0001). G6PD deficiency (P=0.006), lower Hb level (P=0.002), lower hematocrit count (P=0.02), higher bilirubin level (P<0.0001), higher maximal bilirubin level (P<0.0001), and positive blood culture result (P<0.0001) were significant risk factors for ET. Maximal bilirubin level was a significant risk factor for kernicterus (P=0.021) and independently related to ET (P=0.03). Conclusion: G6PD deficiency is an important risk factor for severe NIH. In G6PD-deficent neonates, management of NIH should be hastened to avoid irreversible neurological complications.

Gene Expression Profile of Zinc-Deficient, Homocysteine-Treated Endothelial Cells

  • Kwun, In-Sook;Beattie, John H.
    • Preventive Nutrition and Food Science
    • /
    • 제8권4호
    • /
    • pp.390-394
    • /
    • 2003
  • In the post-genome period, the technique for identifying gene expression has been progressed to high throughput screening. In the field of molecular nutrition, the use of screening techniques to clarify molecular function of specific nutrients would be very advantageous. In this study, we have evaluated Zn-regulated gene expression in Zn-deficient, homocystein-treated EA.hy926 cells, using cDNA microarray, which can be used to screen the expression of many genes simultaneously. The information obtained can be used for preliminary assessment of molecular and signaling events modulated by Zn under pro-atherogenic conditions. EA.hy926 cells derived from human umbilical vein endothelial cells were cultured in Zn-adequate (control, 15 $\mu$M Zn) or Zn-deficient (experimental, 0 $\mu$M Zn) Dulbecco's MEM media under high homocysteine level (100 $\mu$M) for 3 days of post-confluency. Cells were harvested and RNA was extracted. Total RNA was reverse-transcribed and the synthesized cDNA was labeled with Cy3 or Cy5. Fluorescent labeled cDNA probe was applied to microarray slides for hybridization, and the slide was then scanned using a fluorescence scanner. The expression of seven genes was found to be significantly decreased, and one significantly increased, in response to treatment of EA.hy926 cells with Zn-deficient medium, compared with Zn-supplemented medium. The upregulated genes were oncogenes and tumor suppressor genes, cell cycle-related genes and transporter genes. The down-regulated gene was RelB, a component of the NF-kappaB complex of transcription factors. The results of this study imply the effectiveness of cDNA microarray for expression profiling of a singly nutrient deficiency, namely Zn. Furthur study, using tailored-cDNA array and vascular endothelial cell lines, would be beneficial to clarify the molecular function of Zn in atherosclerosis, more in detail.