• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.031 seconds

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.

Dynamic Visual Servoing of Robot Manipulators (로봇 메니퓰레이터의 동력학 시각서보)

  • Baek, Seung-Min;Im, Gyeong-Su;Han, Ung-Gi;Guk, Tae-Yong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.41-47
    • /
    • 2000
  • A better tracking performance can be achieved, if visual sensors such as CCD cameras are used in controling a robot manipulator, than when only relative sensors such as encoders are used. However, for precise visual servoing of a robot manipulator, an expensive vision system which has fast sampling rate must be used. Moreover, even if a fast vision system is implemented for visual servoing, one cannot get a reliable performance without use of robust and stable inner joint servo-loop. In this paper, we propose a dynamic control scheme for robot manipulators with eye-in-hand camera configuration, where a dynamic learning controller is designed to improve the tracking performance of robotic system. The proposed control scheme is implemented for tasks of tracking moving objects and shown to be robust to parameter uncertainty, disturbances, low sampling rate, etc.

  • PDF

Control of Robot Manipulators Using PD-Sliding Mode hybrid Controller (PD-슬라이딩 모드 복합 제어기를 이용한 로봇 매니퓰레이터의 제어)

  • Lee, Kyu-Joon;Kyung, Tai-Hyun;Kim, Jong-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • A new chattering free PD-sliding mode hybrid control scheme is proposed for robot manipulators. This hybrid controller is composed of a PD controller and a semi-continuous sliding mode controller. It has a good robust performance in reaching mode which does not possess invariance property of sliding mode, and has chattering free characteristics in sliding mode. Thus, the PD-sliding mode hybrid controller has a good robust performance in the whole region. It is shown that the proposed control has a good transient response and trajectory tracking performance for a 2-link SCARA robot manipulator.

The Study on a Correlation Among Wind Vibration and Aiming Performance of Radio Wave for a Large Satellite Communication System on the Truck (이동식 대형 위성통신단말의 전파 지향 성능에 대한 바람 진동 영향성에 관한 연구)

  • Kim, Sang-Hyun;Jeon, Jong-Ik;Kim, Byung-Jun;Lee, Jeung;Choi, Ji-Ho;Hwang, Ki-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.744-754
    • /
    • 2016
  • A large satellite communication terminal on the truck shall be designed ruggedly against a disturbance for holding a position which satisfies communication performance. Especially. A design considering a wind is essential for getting into a communication with a satellite in a strong-wind condition. This paper suggests a experimental method to analyze performance of a radio wave and the aiming accuracy by wind vibration. And it analyzes the improvement and vibrational effect on a random-excitation of a structure caused by nonlinear strong wind.

Performance Analysis of GNSS Navigation Messages in the Structure Viewpoint

  • Noh, Jae Hee;Jo, Gwang Hee;Lee, Jang Yong;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.135-146
    • /
    • 2022
  • In GNSS, the structure of the navigation message has been improved to increase the flexibility of data addition and transmission, and the robustness of message reception in a low SNR environment. GNSS signals currently being broadcast have a different message structure from each other, and the structure can be largely classified into the fixed structure, the packetized structure, and the packetized and fixed pattern structure. This paper analyzes the features of these three types of structures and compares the performance using the indicators. It can be seen that the performance after adopting the packetized structure is superior to those of other structures. In particular, there has been remarkable improvement in terms of the message management and transmission efficiency.

Compensation of Pseudo Gyro Bias in SDINS (SDINS에서 의사 자이로 바이어스 보상 기법)

  • Jungmin Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • The performance of a Strapdown Inertial Navigation System (SDINS) relies heavily on the accuracy of sensor error calibration. Systematic calibration is usually employed when only a 2-axis turntable is available. For systematic calibration, the body frame is commonly defined with respect to sensor axes for ease of computation. The drawback of this approach is that sensor axes may undergo time-varying deflection under temperature change, causing pseudo gyro bias. The effect of pseudo gyro bias on navigation performance is negligible for low grade navigation systems. However, for higher grade systems undergoing rapid temperature change, the error is no longer negligible. This paper describes in detail conditions leading to the presence of pseudo gyro bias, and proposes two techniques for mitigating the error. Experimental results show that applying these techniques improves navigation performance for precision SDINS, especially under rapid temperature change.

A Study on the Life-time Prediction for the Rubber O-ring applied to decoy through the Accelerated Life Test (기만기 적용 고무 O-ring의 온도에 따른 가속수명시험을 통한 수명예측에 관한 연구)

  • Jo, Hee-Jin;Kim, Minwoo;Gwak, Hyerim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.182-188
    • /
    • 2016
  • A decoy is a weapon system that can protect vessels from an enemy's torpedo. Thus, the decoy should be able to operate in the field without any failure. Because the decoy can be inoperable once its sealing is broken and water permeates inside the system, the hermetic sealing capability considering the operational environment is mandatory. To be hermetically sealed, a rubber-type O-ring is generally used in a decoy system. The sealed performance of rubber-type products, however, tends to age and deteriorate with time. Therefore, the O-ring needs to be maintained or changed periodically. This paper proposes a method to estimate the proper maintenance period using the hardness and elongation percentage, which represents the performance of the O-ring product and test data from Accelerated Life Test (ALT) of the product. The O-ring used in this paper is a NBR type, and the temperature was chosen to be the main accelerating factor as referenced in many studies. The criteria for the failure of the O-ring was set for the product to be 50% degraded compared to the initial performance. In addition, the Korean standard KS M 6518 was adopted and referenced for the preparation of test samples and the calculation of estimates. The O-ring's predicted life was simulated by analyzing the test results from a computer program, and the optimized maintenance period for the product was determined.

Feasibility Study on Integration of SSR Correction into Network RTK to Provide More Robust Service

  • Lim, Cheol-Soon;Park, Byungwoon;Kim, Dong-Uk;Kee, Chang-Don;Park, Kwan-Dong;Seo, Seungwoo;So, Hyoungmin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.295-305
    • /
    • 2018
  • Network RTK is a highly practical technology that can provide high positioning accuracy at levels between cm~dm regardless of user location in the network by extending the available range of RTK using reference station network. In particular, unlike other carrier-based positioning techniques such as PPP, users are able to acquire high-accuracy positions within a short initialization time of a few or tens of seconds, which increases its value as a future navigation system. However, corrections must be continuously received to maintain a high level of positioning accuracy, and when a time delay of more than 30 seconds occurs, the accuracy may be reduced to the code-based positioning level of meters. In case of SSR, which is currently in the process of standardization for PPP service, the corrections by each error source are transmitted in different transmission intervals, and the rate of change of each correction is transmitted together to compensate the time delay. Using these features of SSR correction is expected to reduce the performance degradation even if users do not receive the network RTK corrections for more than 30 seconds. In this paper, the simulation data were generated from 5 domestic reference stations in Gunwi, Yeongdoek, Daegu, Gimcheon, and Yecheon, and the network RTK and SSR corrections were generated for the corresponding data and applied to the simulation data from Cheongsong reference station, assumed as the user. As a result of the experiment assuming 30 seconds of missing data, the positioning performance compensating for time delay by SSR was analyzed to be horizontal RMS (about 5 cm) and vertical RMS (about 8 cm), and the 95% error was 8.7 cm horizontal and 1cm vertical. This is a significant amount when compared to the horizontal and vertical RMS of 0.3 cm and 0.6 cm, respectively, for Network RTK without time delay for the same data, but is considerably smaller compared to the 0.5 ~ 1 m accuracy level of DGPS or SBAS. Therefore, maintaining Network RTK mode using SSR rather than switching to code-based DGPS or SBAS mode due to failure to receive the network RTK corrections for 30 seconds is considered to be favorable in terms of maintaining position accuracy and recovering performance by quickly resolving the integer ambiguity when the communication channel is recovered.

Design of Signal Quality Indicator(SQI) for the Verification of the Communication Channel Condition in Guided Flight Systems (유도비행체계 내부 통신채널 상태 검사를 위한 신호 품질 지시자 설계)

  • Hong, Eonpyo;Jeong, Sangmoon;Gong, Minsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1049-1055
    • /
    • 2018
  • This paper proposes the Signal Quality Indicator (SQI) to certify the wired communication channels connected between sub-systems embedded in guided flight systems. The communication signals can be distorted due to the poor interconnections of wired channels, the interference from the signals passing through the adjacent routed channels, and additive white Gaussian noises. As the ways to find out the condition of the communication channels, we present the Hamming distance based SQI (H-SQI) and the Euclidean distance based SQI (E-SQI). Two SQIs are compared in terms of the SQI resolution performance and the required number of hardware resources for implementations. The E-SQI requires the 10 times FPGA resources and an additional analog-digital converter over the H-SQI in spite of its outstanding SQI resolution performance. Moreover, the H-SQI could have the enough SQI resolution performance to find out the channel condition by increasing the oversampling rate, so the H-SQI is the more adequate than the E-SQI for the SQI of the guided flight systems.

Optimal Deployment of Sensor Nodes based on Performance Surface of Acoustic Detection (음향 탐지 성능지표 기반의 센서노드 최적 배치 연구)

  • Kim, Sunhyo;Kim, Woojoong;Choi, Jee Woong;Yoon, Young Joong;Park, Joungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.538-547
    • /
    • 2015
  • The goal of this study is to develop an algorithm to propose optimal deployment of detection sensor nodes in the target area, based on a performance surface, which represents detection performance of active and passive acoustic sonar systems. The performance surface of the active detection system is calculated from the azimuthal average of maximum detection ranges, which is estimated with a transmission loss and a reverberation level predicted using ray-based theories. The performance surface of the passive system is calculated using the transmission loss model based on a parabolic equation. The optimization of deployment configurations is then performed by a hybrid method of a virtual force algorithm and a particle swarm optimization. Finally, the effectiveness of deployment configurations is analyzed and discussed with the simulation results obtained using the algorithm proposed in this paper.