• Title/Summary/Keyword: defense performance

Search Result 2,006, Processing Time 0.033 seconds

An Available Orthogonal Training Signal in Wireless Communication System (무선통신 시스템에 적용 가능한 직교 훈련신호)

  • Lee, Hyeong-woo;Cho, Hyung-rae;Kim, Ki-man;Son, Yun-joon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.30-37
    • /
    • 2015
  • The study for enhancing the data transmission rate of the next generation wireless communication system using MIMO system operating in the frequency selective fading environment is currently actively conducted. Mixed signal from each transmitted antennas are received at antennas. The training signal with orthogonal property is needed to separate the mixed signal and enable to estimate channel and time synchronization. In this paper we introduce several training sequences used in MIMO communication system and proposed the modified WeCAN sequence with good auto-correlation property in interested area. We compared auto-correlation property of each sequence via simulation and compared the performance of sequences in doppler shift and multipath fading channel.

Vulnerability Defense of On-Zeroboard using CSRF Attack (CSRF 공격기법에 대한 제로보드상의 취약점 방어)

  • Kim, Do-Won;Bae, Su-Yeon;An, Beongku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.57-61
    • /
    • 2014
  • Zeroboard is a public bulletin board that can support PHP and MySQL. It has been used by many people because it is easy to use, but there is no more updates after Zeroboard4. So, there is a problem that its administrator will have nothing to do about it if zeroboard has a vulnerability. In this paper, we will discuss about CSRF(Cross Site request Forgery) which is developed and expanded by XSS(Cross Site Scripting). Also, we will find CSRF attacks and suggest an alternative method using VM-ware. The main features and contributions of the proposed method are as follows. First, make an environment construction using VM-ware and other tools. Second, analyze and prepare vulnerabilities using Proxy server. Performance evaluation will be conducted by applying possible countermeasure.

Design and Implementation of Cyber Attack Simulator based on Attack Techniques Modeling

  • Kang, Yong Goo;Yoo, Jeong Do;Park, Eunji;Kim, Dong Hwa;Kim, Huy Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.65-72
    • /
    • 2020
  • With the development of information technology and the growth of the scale of system and network, cyber threats and crimes continue to increase. To cope with these threats, cybersecurity training based on actual attacks and defenses is required. However, cybersecurity training requires expert analysis and attack performance, which is inefficient in terms of cost and time. In this paper, we propose a cyber attack simulator that automatically executes attack techniques. This simulator generates attack scenarios by combining attack techniques modeled to be implemented and executes the attack by sequentially executing the derived scenarios. In order to verify the effectiveness of the proposed attack simulator, we experimented by setting an example attack goal and scenarios in a real environment. The attack simulator successfully performed five attack techniques to gain administrator privileges.

Estimation of Safety Area for Intercept Debris by Using Modeling and Simulation (탄도탄 요격시험 안전구역 산출을 위한 모델링 및 시뮬레이션)

  • Lee, Sungkyun;Go, Jinyong;Han, Yongsu;Kim, Changhwan
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • The ballistic missile threat continues to increase with the proliferation of missile technology. In response to this threat, many kinds of interceptors have been emphasized over the years. For development of interceptor, systematic flight tests are essential. Flight tests provide valuable data that can be used to verify performance and confirm the technological progress of ballistic missile defense system including interceptor. However, during flight tests, civilians near the test region could be risk due to a lot of intercept debris. For this reason, reliable estimate of safety area for the flight tests should be preceded. In this study, prediction of safety area is performed through modeling and simulation. Firstly, behaviors of ballistic missile and interceptor are simulated for those entire phase including interception to obtain the relative intercept velocity and the relative impact angle. By using obtained data of kinetic energy, the fragment ejection velocity is calculated and fragment trajectories are simulated by considering drag, gravity and wind effects. Based on the debris field formation and hazard evaluation of debris, final safety area is calculated.

Design and Experimental Study of a Launch and Recovery System for an Underwater Tow-fish with Consideration of Sea State (해상상태를 고려한 수중예인체 진회수시스템 설계 및 실험)

  • Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Choi, Hyeung-sik;Kim, Joon-young;Kim, Myung-gyung;Kim, Jung-hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.332-338
    • /
    • 2017
  • Launch and recovery system(LARS) is required to perform an USV-based underwater exploration. Through the analysis of the requirements according to the scenario of underwater exploration, the mechanism of LARS and the conceptual design of the mechanical parts of LARS are carried out. In addition, a USV motion can be induced due to environmental disturbances such as waves, so the detailed design of LARS for recovering the underwater tow-fish stably in consideration of the USV motion is performed. To verify the performance of launch and recovery operations, LARS and test bed were developed. The results show that the proposed LARS can stably launch and recovery an underwater tow-fish.

Identification of glucosinolate-associated QTLs in cabbage (Brassica oleracea L. var. capitata)

  • Oh, Sang Heon;Choi, Su Ryun;Pang, Wenxing;Rameneni, Jana Jeevan;Yi, So Young;Kim, Man-Sun;Im, Su Bin;Lim, Yong Pyo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Glucosinolates are one of the important plant secondary metabolites that are produced mainly in Brassicaceae plants. The compounds are primarily involved in defense responses to biotic and abiotic resistance in plants and play important biological roles during plant growth and development. In this study, the glucosinolate profiles in leaves of two different Brassica oleracea populations were compared using high-performance liquid chromatography (HPLC). The nine major glucosinolates compounds in cabbage leaves were identified as belonging to the aliphatic and indolic groups. Among them, sinigrin, which belongs to the aliphatic group, was recorded to be 41% whereas glucobrassicin and 4-methoxyglucobrassicin, which belong to the indolic group, were recorded to be 53.8%. In addition, we performed a genetic analysis to identify regions of the genome regulating glucosinolates biosynthesis in the $F_3$ population of Brassica oleracea. A total of 9 glucosinolates were used for the quantitative trait locus (QTL) analysis. Out of 9, a total of 3 QTLs were identified and they were associated with sinigrin, glucobrassicin, and 4-methoxyglucobrassicin synthesis located in Chromosome 1 and Chromosome 8, respectively. The results of this study will provide valuable information for the breeding of cabbage containing high glucosinolate content, and our next target is to develop component-specific and tightly linked markers for various glucosinolates.

Link Performance Analysis for Intra-Aircraft Wireless Communications in 4.4GHz (4.4GHz 대역을 활용한 항공기내 무선통신 링크 성능 분석)

  • Cho, Moon-Je;Jung, Bang Chul;Park, Pangun;Chang, Woohyuk;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1243-1248
    • /
    • 2016
  • This paper investigated the channel link budget for Wireless Avionics Intra-Communication (WAIC) in 4.4GHz. The band 4.2~4.2GHz was allocated for the communication service among aeronautical applications in world radiocommunication conference (WRC). Wireless channels in aircraft was modelled by the combination of path loss, shadowing effect caused by obstacles, and fading caused by multipath signals. In addition, wireless channels in aircraft are categorized into 6 groups according to various locations of transmitter and receiver. We analyzed the channel link budget for the 6 channel groups in terms of maximum transmission distance and outage probability. Our analysis and intensive computer simulation results show that the propagation characteristics of group A, B, and F is superior to group C, D, E, and the propagation of group E is the most vulnerable. Also, these results can be utilized as basic reference for the channel analysis of intra-aircraft or similar environment.

A Performance of Positioning Accuracy Improvement Scheme using Wavelet Denoising Filter (Wavelet Denoising Filter를 이용한 측위 정밀도 향상 기법 성능)

  • Shin, Dong Soo;Park, Ji Ho;Park, Young Sik;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Recently, precision guided munition systems and missile defense systems based on GPS have been taking a key role in modern warfare. In warfare however, unexpected interferences cause by large/small scale fading, radio frequency interferences, etc. These interferences result in a severe GPS positioning error, which could occur late supports and friendly fires. To solve the problems, this paper proposes an interference mitigation positioning method by adopting a wavelet denoising filter algorithm. The algorithm is applied to a GPS/QZSS/Wi-Fi combined positioning system which was performed by this laboratory. Experimental results of this paper are based on a real field test data of a GPS/QZSS/Wi-Fi combined positioning system and a simulation data of a wavelet denoising filter algorithm. At the end, the simulation result demonstrates its superiority by showing a 21.6% improved result in comparison to a conventional GPS system.

DoA Estimating Algorithm Based on ESPRIT by Stepwise Estimating Correlation Matrix (단계적 상관 행렬 추정에 따른 ESPRIT 기반 앰 추정 알고리즘)

  • Shim, Jae-Nam;Park, Hongseok;Kim, Donghyun;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1549-1556
    • /
    • 2016
  • By increased moving speed of aircraft, estimating location of itself becomes more important than ever. This requirement is satisfied by appearance of GPS, however it is useless when signal reception from satellite is not good enough by interruption, for example, traffic jamming. Applying link for communication to additional positioning system is capable of providing relative position of aircraft. Estimating location with link for communication is done without additional equipment but with signal processing based on correlation of received signal. ESPRIT is one of the representative algorithm among them. Estimating correlation matrix is possible to have error since it includes average operation needs enough number of samples not impractical. Therefore we propose algorithm that defines, estimates and removes error matrix of correlation. Proposing algorithm shows better performance than previous one when transmitters are close.

A Study on Estimation of Manoeuvring Performance in Shallow Water using CFD in Initial Ship Design Phase (선박 초기설계단계에서 CFD를 이용한 천수 중 조종성능 추정에 관한 연구)

  • Kim, In-Tae;Kim, Sang-Hyun;Kim, Hyun-Jun;Kim, Dong-Young;Yang, Jung-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.350-360
    • /
    • 2018
  • Analysis of ship's manoeuverability in shallow water is an important task from the perspective of the vessels' navigational safety. Since the number of ships operated in restricted water has increased due to the enlargement of vessels and ships represent different characteristics of the manoeuverability when operated in shallow and deep water, it is significant to evaluate ship manoeuverability at initial design stage. At the initial stage of design, the estimation of manoeuverability is generally performed with hydrodynamic coefficients estimated based on empirical formula. However, the accuracy of estimating hydrodynamic coefficients by the empirical formula in shallow water is poor compared to that in deep water. Therefore, the error in the estimation of manoeuverability increases in shallow water. In this study, CFD is proposed to improve the accuracy of manoeuverability in shallow water at the initial design stage and hydrodynamic coefficients were obtained based on PMM test in shallow water. Furthermore, the ship manoeuverability was estimated both the proposed strategy and the empirical formula. At last, validity of the proposed strategy using CFD for the estimation of manoeuverability was confirmed by comparison with the manoeuverability estimation results from model test.