• Title/Summary/Keyword: defense R&D test development

Search Result 176, Processing Time 0.022 seconds

Development of a Silicon Carbide Large-aperture Optical Telescope for a Satellite (SiC를 이용한 대구경 위성용 망원경 제작)

  • Bae, Jong In;Lee, Haeng Bok;Kim, Jeong Won;Lee, Kyung Mook;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.2
    • /
    • pp.74-83
    • /
    • 2022
  • The entire process, from the raw material to the final system qualification test, has been developed to fabricate a large-diameter, lightweight reflective-telescope system for a satellite observation. The telescope with 3 anastigmatic mirrors has an aperture of 700 mm and a total mass of 66 kg. We baked a silicon carbide substrate body from a carbon preform using a reaction sintering method, and tested the structural and chemical properties, surface conditions, and crystal structure of the body. We developed the polishing and coating methods considering the mechanical and chemical properties of the silicon carbide (SiC) body, and we utilized a chemical-vapor-deposition method to deposit a dense SiC thin film more than 170 ㎛ thick on the mirror's surface, to preserve a highly reflective surface with excellent optical performance. After we made the SiC mirrors, we measured the wave-front error for various optical fields by assembling and aligning three mirrors and support structures. We conducted major space-environment tests for the components and final assembly by temperature-cycling tests and vibration-shock tests, in accordance with the qualifications for the space and launch environment. We confirmed that the final telescope achieves all of the target performance criteria.

Interfacial Evaluation of Single-Carbon Fiber/Phenolic and Carbon Nanotube-Phenolic Composites Using Micromechanical Tests and Electrical Resistance Measurements (미세역학시험법과 전기저항 측정을 이용한 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.149-154
    • /
    • 2010
  • Interfacial evaluation was investigated for single-carbon fiber/phenolic and carbon nanotube (CNT)-phenolic composites by micromechanical technique and electrical resistance measurement combined with wettability test. Compressive strength of pure phenol and CNT-phenolic composites were compared using Broutman specimen. The contact resistance of CNT-phenolic composites was obtained using a gradient specimen by two and four-point methods. Surface energies and wettability by dynamic contact angle measurement were measured using Wilhelmy plate technique. Since hydrophobic domains are formed as heterogeneous microstructure of CNT in the surface, the dynamic contact angle exhibited more than $90^{\circ}$. CNT-phenolic composites exhibited a higher apparent modulus than neat phenolic case due to better stress transferring effect. Work of adhesion, $W_a$ between single-carbon fiber and CNT-phenolic composites exhibited higher than neat phenolic resin due to the enhanced viscosity by CNT addition. It was consistent with micro-failure patterns in microdroplet test.

Single Carbon Fiber/Acid-Treated CNT-Epoxy Composites by Electro-Micromechanical Technique and Wettability Test for Dispersion and Self-Sensing (젖음성 시험과 전기-미세역학 시험법과 통한 단 카본섬유/산처리된 CNT-에폭시 나노복합재료의 분산과 자체-감지능)

  • Jang, Jung-Hoon;Wang, Zuo-Jia;GnidaKouong, Joel;Gu, Ga-Young;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • Dispersion and self-sensing evaluation for single-carbon fiber reinforced in three different acid-treated CNT-epoxy nanocomposites were investigated by electro-micromechanical techniques and wettability tests. Self-sensing based on contact resistivity exhibited more noise for single carbon fiber/acid-treated CNT-epoxy composites than it did for untreated CNT. However, the apparent modulus was higher the acid treated case than the untreated case which is attributed to better stress transfer. The interfacial shear strength (IFSS) between carbon fibers and the CNT-epoxy was lower than that between carbon fiber and neat epoxy due to the increased viscosity associated with the addition of the CNT. The CNT-epoxy nanocomposite exhibited more hydrophobicity than did neat epoxy. Change in the thermodynamic work of adhesion was consistent with changes in the IFSS but disproportional to that of the apparent modulus. The optimum condition of acid treatment on the need can be obtained instead of the maximum condition.

  • PDF

Validation of Equivalent Shear Beam Container Using Dynamic Centrifuge Tests (동적 원심모형실험을 이용한 등가전단보 토조의 성능 검증)

  • Kim, Yoon-Ah;Lee, Hae-In;Ko, Kil-Wan;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.61-70
    • /
    • 2020
  • In dynamic centrifuge tests, equivalent shear beam (ESB) container minimizes the boundary effect between the soil model and the wall of the container so as to effectively simulate the boundary conditions of real field state. The ESB container at KAIST was evaluated to be performing properly by Lee et al. (2013). However, it is necessary to re-evaluate the performance of ESB container since the ESB container may have deteriorated over time. Thus, the performance of eight-year-old ESB container was re-evaluated through dynamic centrifuge tests. Firstly, the natural period of the empty ESB container was compared with the results of Lee et al. (2013). Then the boundary effect of sand-filled ESB container was evaluated. Results show that the dynamic behavior of the sand-filled ESB container was similar to that of the ground, despite a decrease in the natural period of the empty ESB container over time. In addition, the dynamic response of the ground built in the ESB container and the same ground simulated through numerical analysis with free-field boundary conditions were similar. Therefore, it was found that the boundary effect of the ESB container due to the decrease in the natural period was not significant.

Performance Enhancement of Virtual War Field Simulator for Future Autonomous Unmanned System (미래 자율무인체계를 위한 가상 전장 환경 시뮬레이터 성능 개선)

  • Lee, Jun Pyo;Kim, Sang Hee;Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.109-119
    • /
    • 2013
  • An unmanned ground vehicle(UGV) today plays a significant role in both civilian and military areas. Predominantly these systems are used to replace humans in hazardous situations. To take unmanned ground vehicles systems to the next level and increase their capabilities and the range of missions they are able to perform in the combat field, new technologies are needed in the area of command and control. For this reason, we present war field simulator based on information fusion technology to efficiently control UGV. In this paper, we present the war field simulator which is made of critical components, that is, simulation controller, virtual image viewer, and remote control device to efficiently control UGV in the future combat fields. In our information fusion technology, improved methods of target detection, recognition, and location are proposed. In addition, time reduction method of target detection is also proposed. In the consequence of the operation test, we expect that our war field simulator based on information fusion technology plays an important role in the future military operation significantly.

Analysis of a Gas Mask Using CFD Simulation (CFD모사기법을 이용한 가스 여과기 성능 해석)

  • Jeon, Rakyoung;Kwon, Kihyun;Yoon, Soonmin;Park, Myungkyu;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum-Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.