• Title/Summary/Keyword: defect engineering

Search Result 2,235, Processing Time 0.029 seconds

Micro-structural defects in ruby samples from Mong Hsu, Myanmar

  • Maneeratanasarn, P.;Wathanakul, P.;Kim, Y.C.;Choi, H.M.;Bang, S.Y.;Choi, B.G.;Shim, K.B.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2009
  • Mong Hsu rubies from Myanmar were heat treated in oxidizing(oxygen) atmosphere at $1650^{\circ}C$ for 1 hour. The investigations of the micro-structural defects in the samples before and after heat treatment have been carried out by the variety of analysis techniques of FTIR, UV-VIS-NIR and SEM-EDS. It was found that after heat treatment the dark blue cores region were disappeared and turned to orange red color with the presence of the dense cloudy brownish colored tiny particles in and near former blue zoning. As-received ruby samples only revealed the presence of FTIR absorption peaks of diaspore, boehmite and O-H stretching, at 1986, 2115 and $3078/3319\;cm^{-1}$ respectively. The UV-VIS-NIR absorption of as-received and heat treated ruby samples similarly showed peaks at 405, 554 and 693 nm associated with $Cr^{3+}$, but for the same samples, the absorption peak of heat-treated ruby samples at 693 nm was somewhat stronger than that of the untreated ruby samples. Especially the presence of $Cr^{3+}$ peaks at 659 and 675 nm was found obviously in as-received ruby samples only. The SEM-EDS investigation disclosed the micro-porous defect structures commonly related to the core regions of the untreated ruby samples, which after heat treatment in an oxidizing environment those defect features have been dissolved into the host phase resulting in the lightening or disappearance of the dark coloration of ruby core.

Element and Crack Geometry Sensitivities of Finite Element Analysis Results of Linear Elastic Stress Intensity Factor for Surface Cracked Straight Pipes (표면균열이 있는 직관에 대한 선형탄성 응력확대계수 유한요소해석 결과의 요소 및 균열형상 민감도)

  • Ryu, Dongil;Bae, Kyung-Dong;Je, Jin-Ho;An, Joong-Hyok;Kim, Yun-Jae;Song, Tae-Kwang;Kim, Yong-Beum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.521-527
    • /
    • 2013
  • This study provides the elastic stress intensity factors, K, for circumferential and longitudinal surface cracked straight pipes under single or combined loads of internal pressure, bending, and torsion based on three-dimensional (3D) finite element (FE) analyses. FE results are compared with two different types of defect assessment codes (API-579-1 and RCC-MR A16) to prove the accuracy of the FE results and the differences between the codes. Through the 3D FE analysis, it is found that the stress intensity factors are sensitive to the number of elements, which they were believed to not be sensitive to because of path independence. Differences were also found between the FE analysis results for crack defining methods and the results obtained by two different types of defect assessment codes.

Coulometric Titration for the Determination of Nonstoichiometry in Ni1-XO (전하량적정법에 의한 Ni1-XO의 Nonstoichiometry 측정)

  • Suh, Sang-hyuk;Oh, Seung-Mo
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.385-392
    • /
    • 1991
  • Nonstoichiometry and defect model for $Ni_{1-x}O$ were determined by coulometric titration method. In the temperature range of 1123-1198K and oxygen partial pressure of 0.21-0.1 atm, the nonstoichiometry was found to be proportional to the fourth root of the oxygen partial pressure. This pressure dependence can be explained by the fact that nonstoichiometric $Ni_{1-x}O$ contains singly ionized metal vacancies as the predominant point defects. At T=1173K and $Po_2=0.21atm$, the nonstoichiometry, x was $1.21{\times}10^{-4}$. The standard formation enthalpy of defects in $Ni_{1-x}O$ was found, on the basis of this defect model, to be 0.95 eV. Also the result indicates that both of singly and doubly ionized metal vacancies are simultaneously present at above 1248K.

  • PDF

The Effect of Silk Membrane Plus 3% 4-hexylresorcinol on Guided Bone Regeneration in a Rabbit Calvarial Defect Model

  • Seok, Hyun;Lee, Sang-Woon;Kim, Seong-Gon;Seo, Dong-Hyun;Kim, Han Sung;Kweon, Hae Yong;Jo, You-Young;Kang, Tae Yeon;Lee, Myung-Jin;Chae, Weon-Sik
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.1
    • /
    • pp.209-217
    • /
    • 2013
  • The objective of this study was to evaluate the bone regeneration capability of silk membrane plus 3% 4-hexylresorcinol (3% 4-HR plus SM) in a rabbit calvarial defect model. Twenty New Zealand white rabbits were used in this study. Bilateral round shaped defects were created in the parietal bone (diameter: 8.0 mm). And the defects were covered with (1) 3% 4-HR plus SM, (2) collagen membrane (CM), (3) no graft material. After surgery, the animals were sacrificed at 4 weeks and 8 weeks. Bone regeneration was analyzed in each section by micro-computerized tomography (${\mu}$-CT). And Hematoxylin and eosin stains were used for histological analysis. As measured by ${\mu}$-CT analysis 4 weeks after surgery, the average of new bone formation in animals treated with 3% 4-HR plus SM was greater than that of animals treated with CM. and the difference was statistically significant. And well organized lamella bones were observed in the histological view of the 3% 4-HR plus SM group. Therefore, more bone regeneration was seen in animals treated with 3% 4-HR plus SM than in those treated with CM or uncovered control.

Effect of Se Flux and Se Treatment on the Photovoltaic Performance of β-CIGS Solar Cells

  • Kim, Ji Hye;Cha, Eun Seok;Park, Byong Guk;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.39-44
    • /
    • 2015
  • $Cu(In,Ga)_3Se_5$ (${\beta}-CIGS$) has a band gap of 1.35 eV which is an optimum value for high solar-energy conversion efficiency. However, ${\beta}-CIGS$ film was not well characterized yet due to lower efficiency compared to $Cu(In,Ga)Se_2$ (${\alpha}-CIGS$). In this work, ${\beta}-CIGS$ films were fabricated by a three-stage co-evaporation of elemental sources with various Se fluxes. As the Se flux increased, the crystallinity of ${\beta}-CIGS$ phase was improved from the analysis of Raman spectroscopy and a deep-level defect was reduced from the analysis of photoluminescence spectroscopy. A Se treatment of the ${\beta}-CIGS$ film at $200^{\circ}C$ increased Ga content and decreased Cu content at the surface of the film. With the Se treatment at $200^{\circ}C$, the cell efficiency was greatly improved for the CIGS films prepared with low Se flux due to the increase of short-circuit current and fill factor. It was found that the main reason of performance improvement was lower Cu content at the surface instead of higher Ga content.

A Study of the Formation of Binary Intermediate Layer on Pd-based Hydrogen Separation Membrane Using Various Types of Metal Oxides (다양한 형태의 금속 산화물을 이용한 Pd계 복합 수소분리막의 2원계 중간층 형성에 관한 연구)

  • Hwang, In-Hyuck;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.196-200
    • /
    • 2018
  • In this study, the intermediate layer in Pd-based hydrogen separation membrane was synthesized to minimize the surface roughness and defects using powder-type and sol-type metal oxides. The surface properties and gas permeation characteristics were analysed by SEM and $N_2$ gas permeation test. The coating layer composed of sol type metal oxides has smooth surface, especially the layer coated by $TiO_2$ sol has little pin holes, cracks and defects. The binary layer composed of powder type and sol type metal oxides has similar flux characteristics to a single sol type layer. The Pd-based composite membrane improved by the binary intermediate layer exhibited $0.32mol/m^2s$ of the hydrogen permeation flux with a selectivity ($H_2/N_2$) of ~10,890 at 672 K and a pressure difference of 1 bar.

Development of the Mechenical System and Vision Algorithm for the External Appearance Test Using Vision Image Processing (비전 이미지 프로세싱을 이용한 외관검사가 가능한 기계시스템 및 비전 알고리즘 개발)

  • Kim, Young-Choon;Kim, Young-Man;Kim, Sung-Gil;Kim, Hong-Bae;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.202-208
    • /
    • 2016
  • In this study, the defect in connection with a C-tray was inspected using a low-cost camera. The four test items were the device overlapping in the tray, the bending of the tray, the loaded quantity of the tray, and the device pocket leaving, an algorithm was developed for defining and detecting the above defect types. Therefore, the developed handling system could extend the application of the stack of the c-tray and provide a quantity verification inspection on the packing processing. The machine operation control program, which can ensure the optimal inspection image to match the scan speed, was developed and the control program that can process the user gui and the vision image utilizing the control was developed. Overall, a mechanical system that is practicable for obtaining an image and processing the vision data was designed.

Preparation of Intrinsic ZnO Films at Low Temperature Using Oxidation of ZnS Precursor and Characterizion of the Films

  • Park, Do Hyung;Cho, Yang Hwi;Shin, Dong Hyeop;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • ZnO film has been used for CIGS solar cells as a buffer layer as itself or by doping Mg and Sn; ZnO film also has been used as a transparent conducting layer by doping Al or B for solar cells. Since ZnO itself is a host material for many applications it is necessary to understand the electrical and optical properties of ZnO film itself with various preparation conditions. We prepared ZnO films by converting ZnS precursor into ZnO film by thermal annealing. ZnO film was formed at low temperature as low as $500^{\circ}C$ by annealing a ZnS precursor layer in air. In the air annealing, the electrical resistivity decreased monotonically with increasing annealing temperature; the intensity of the green photoluminescence at 505 nm increased up to $750^{\circ}C$ annealing. The electrical resistivity further decreased and the intensity of green emission also increased in reducing atmospheres. The results suggest that deep-level defects originated by oxygen vacancy enhanced green emission, which reduce light transmittance and enhance the recombination of electrons in conduction band and holes in valence. More oxidizing environment is necessary to obtain defect-free ZnO film for higher transparency.

Comparison of Non-Destructive Testing Images using $^{192}Ir$ and $^{75}Se$ with Computed Radiography System (Computed Radiography 시스템에 $^{192}Ir$$^{75}Se$ 동위원소를 적용하여 촬영한 비파괴검사 영상 비교)

  • Kang, Sang-Mook;Chol, Chang-Il;Lee, Seung-Kyu;Park, Sang-Ki;Kim, Yong-Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.26-33
    • /
    • 2010
  • A computed Radiography (CR) system by use of reusable Image Plate (IP) offers a convenient and reliable way to replace a conventional film-screen system for NDT (non-destructive testing) field. The quality of a radiography to detect a defect of welded objects depends on the procedure embracing several factors such as measurement conditions, image plate type/class, radiation energy, radiation type, and source to image plate distance. Also, the ability of images to detect a flaw reduces with increasing object thickness. In the study, the properties of gamma ray source were summarized for NDT field and inspection images of CR image system manufactured by FUJI were acquired using $^{75}Se$ and $^{192}Ir$ with welded objects. We analyzed the gray scale of hole defect image by using XCAP image processing program and calculated the image contrast and SNR in definition. Also the sesitivities of image quality indicator(IQI) were calculated for hot and cooling tube image of $^{75}Se$ and $^{192}Ir$.

Characteristic of Through Silicon Via's Seed Layer Deposition and Via Filling (실리콘 관통형 Via(TSV)의 Seed Layer 증착 및 Via Filling 특성)

  • Lee, Hyunju;Choi, Manho;Kwon, Se-Hun;Lee, Jae-Ho;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.550-554
    • /
    • 2013
  • As continued scaling becomes increasingly difficult, 3D integration has emerged as a viable solution to achieve higher bandwidths and good power efficiency. 3D integration can be defined as a technology involving the stacking of multiple processed wafers containing integrated circuits on top of each other with vertical interconnects between the wafers. This type of 3D structure can improve performance levels, enable the integration of devices with incompatible process flows, and reduce form factors. Through silicon vias (TSVs), which directly connect stacked structures die-to-die, are an enabling technology for future 3D integrated systems. TSVs filled with copper using an electro-plating method are investigated in this study. DC and pulses are used as a current source for the electro-plating process as a means of via filling. A TiN barrier and Ru seed layers are deposited by plasma-enhanced atomic layer deposition (PEALD) with thicknesses of 10 and 30 nm, respectively. All samples electroplated by the DC current showed defects, even with additives. However, the samples electroplated by the pulse current showed defect-free super-filled via structures. The optimized condition for defect-free bottom-up super-filling was established by adjusting the additive concentrations in the basic plating solution of copper sulfate. The optimized concentrations of JGB and SPS were found to be 10 and 20 ppm, respectively.