• Title/Summary/Keyword: defect engineering

Search Result 2,235, Processing Time 0.029 seconds

Enhancing Freeze-Thaw Resilience in Adhered Mortar Tile Modules (떠붙임 모르타르 타일 모듈의 동결융해 저항성 평가)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Kim, Moon-Kyu;Choi, Byung-Cheol;Ji, Sung-Jun;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.241-249
    • /
    • 2023
  • The objective of this research was to engineer a tile module that could efficiently curtail the incidence of tile defects during the construction phase. To assess the potential diminution in defect manifestation, we executed experiments centered on surface condition, the variation in mass before and after the freeze-thaw test, and adhesive strength. Our findings demonstrated that thermal contraction and expansion induced a relatively escalated frequency of defects in the underwater setting for the aluminum mesh, while the steel mesh saw a higher defect incidence in the air environment. Additionally, it was noted that the adhesive strength exhibited a trend towards augmentation as the mesh size dwindled. Collectively, these results suggest that the employment of smaller mesh sizes can foster improved adhesive strength, consequently diminishing tile defects. Further exploration and development of the tile module, informed by these insights, can substantially enhance the efficacy of the construction process.

Effect of modifying the thickness of the plate at the level of the overlap length in the presence of bonding defects on the strength of an adhesive joint

  • Attout Boualem;Sidi Mohamed Medjdoub;Madani Kouider;Kaddouri Nadia;Elajrami Mohamed;Belhouari Mohamed;Amin Houari;Salah Amroune;R.D.S.G. Campilho
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.83-103
    • /
    • 2024
  • Adhesive bonding is currently widely used in many industrial fields, particularly in the aeronautics sector. Despite its advantages over mechanical joints such as riveting and welding, adhesive bonding is mostly used for secondary structures due to its low peel strength; especially if it is simultaneously exposed to temperature and humidity; and often presence of bonding defects. In fact, during joint preparation, several types of defects can be introduced into the adhesive layer such as air bubbles, cavities, or cracks, which induce stress concentrations potentially leading to premature failure. Indeed, the presence of defects in the adhesive joint has a significant effect on adhesive stresses, which emphasizes the need for a good surface treatment. The research in this field is aimed at minimizing the stresses in the adhesive joint at its free edges by geometric modifications of the ovelapping part and/or by changing the nature of the substrates. In this study, the finite element method is used to describe the mechanical behavior of bonded joints. Thus, a three-dimensional model is made to analyze the effect of defects in the adhesive joint at areas of high stress concentrations. The analysis consists of estimating the different stresses in an adhesive joint between two 2024-T3 aluminum plates. Two types of single lap joints(SLJ) were analyzed: a standard SLJ and another modified by removing 0.2 mm of material from the thickness of one plate along the overlap length, taking into account several factors such as the applied load, shape, size and position of the defect. The obtained results clearly show that the presence of a bonding defect significantly affects stresses in the adhesive joint, which become important if the joint is subjected to a higher applied load. On the other hand, the geometric modification made to the plate considerably reduces the various stresses in the adhesive joint even in the presence of a bonding defect.

The Detection of Gear Failures Using Wavelet Transform (웨이브렛변환을 이용한 기어결함의 진단)

  • Park, Sung-Tae;Gim, Jae-Woong;Yang, Jianguo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.617-622
    • /
    • 2002
  • This paper presents that the Wavelet Transform can be used to detect the various local defects in a gearbos. Two types of defects which are broken tooth and localized wear, are experimented and the signals are collected by accerometer and analyzed. Because of the complecity of the signals acquired from sensor, it is needed to identify the interesting signal. The natural frequencies of shafts and the gear mesh frequency(GMF) is calculated theretically. DWT, CWT and the aplication are used to extract a gear-localized defect feature from the vibration signal of the gearbox with the defective gear. The results shows the transform is more effective to detect the failures than the Fourier Transform.

  • PDF

Phenomenological monte carlo simulation model for predicting B, $BF_2$, As, P and Si implant profiles in silicon-based semiconductor device

  • Kwon, Oh-Kuen;Son, Myung-Sik;Hwang, Ho-Jung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • This paper presents a newly enhanced damage model in Monte Carlo (MC) simulation for the accurate prediction of 3-Dimensional (3D) as-implanted impurity and point defect profiles induced by ion implantation in (100) crystal silicon. An empirical electronic energy loss model for B, BF2, As, P and Si self implant over the wide energy range has been proposed for the ULSI device technology and development. Our model shows very good agreement with the SIMS data over the wide energy range. In the damage accumulation, we considered the self-annealing effects by introducing our proposed non-linear recomvination probability function of each point defect for the computational efficiency. For the damage profiles, we compared the published RBS/channeling data with our results of phosphorus implants. Our damage model shows very reasonable agreement with the experiments for phosphorus implants.

  • PDF

Time Reversal Beam Focusing of Ultrasonic Array Transducer on a Defect in a Two Layer Medium

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.242-247
    • /
    • 2009
  • The ability of time reversal techniques to focus ultrasonic beams on the source location is important in many aspects of ultrasonic nondestructive evaluation. In this paper, we investigate the time reversal beam focusing of ultrasonic array sensors on a defect in layered media. Numerical modeling is performed using the commercially available software which employs a time domain finite difference method. Two different time reversal approaches are considered - the through transmission and the pulse-echo. Linear array sensors composed of N elements of line sources are used for signal reception/excitation, time reversal, and reemission in time reversal processes associated with the scattering source of a side-drilled hole located in the second layer of two layer structure. The simulation results demonstrate the time reversal focusing even with multiple reflections from the interface of layered structure. We examine the focusing resolution that is related to the propagation distance, the size of array sensor and the wavelength.

Simulation of Ultrasonic Beam Focusing on a Defect in Anisotropic, Inhomogeneous Media

  • Jeong, Hyun-Jo;Cho, Sung-Jong;Erdenetuya, Sharaa;Jung, Duck-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.635-641
    • /
    • 2011
  • In ultrasonic testing of dissimilar metal welds, application of phased array technique in terms of incident beam focusing is not easy because of complicated material structures formed during the multi-pass welding process. Time reversal(TR) techniques can overcome some limitations of phased array since they are self-focusing that does not depend on the geometrical and physical properties of testing components. In this paper, we test the possibility of TR focusing on a defect within anisotropic, heterogeneous austenitic welds. A commercial simulation software is employed for TR focusing and imaging of a side-drilled hole. The performance of time reversed adaptive focal law is compared with those of calculated focal laws for both anisotropic and isotropic welds.

A Defect Inspection Algorithm Using Multi-Resolution Analysis based on Wavelet Transform (웨이블릿 다해상도 분석에 의한 디지털 이미지 결점 검출 알고리즘)

  • Kim, Kyung-Joon;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • A real-time inspection system has been developed by combining CCD based image processing algorithm and a standard lighting equipment. The system was tested for defective fabrics showing nozzle contact scratch marks, which were one of the frequently occurring defects. Multi-resolution analysis(MRA) algorithm were used and evaluated according to both their processing time and detection rate. Standard value for defective inspection was the mean of the non-defect image feature. Similarity was decided via comparing standard value with sample image feature value. Totally, we achieved defective inspection accuracy above 95%.

Analysis and Depth Estimation of Complex Defects on the Underground Gas Pipelines

  • Kim, Jong-Hwa;Kim, Min-Ho;Choi, Doo-Hyun
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.202-206
    • /
    • 2013
  • In this paper, the MFL (magnetic flux leakage) signals of complex defects on the underground gas pipeline are analyzed and their depths are estimated. Since closely-located defects (complex defects) affect each other, accelerate the progress of defection, and are finally combined to one (cluster), it's meaningful to differentiate complex defects from single defects by analyzing their characteristics. Various types of complex defects are characterized and analyzed by defining the safety distance for interference. 26 artificial defects are carved on the pipeline simulation facility (PSF) to analyze the characteristics of complex defect and demonstrate the accuracy of the proposed complex defect estimation. The proposed method shows average length error of 5.8 mm, average width error of 15.55 mm, and average depth error of 8.59%, respectively.

PCB Defect Inspection using Deep Learning (딥러닝을 이용한 PCB 불량 검출)

  • Baek, Yeong-Tae;Sim, Jae-Gyu;Pak, Chan-Young;Lee, Se-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.325-326
    • /
    • 2018
  • 본 논문에서는 PCB 공정상의 육안검사를 통한 불량 분류 방식에서 CNN을 이용한 PCB 불량 분류 방식을 제안한다. 이 방식은 육안검사의 문제점인 작업자의 숙련도에 따른 검사 효율을 자동화 검사 시스템에 의해 해결하며, 불량 위치와 종류를 결과 이미지에 표시한다. 또한 이미지 분류 결과를 모니터링할 수 있도록 시리얼 통신을 통하여 Darknet 프레임워크와 LCD를 연동하였다. 적은 량의 데이터 셋으로도 좋은 결과를 냈으며, 다양한 데이터 셋을 이용해 훈련할 시 전반적인 PCB 불량의 분류가 가능할 것으로 예상된다.

  • PDF

Guided-Wave Tomographic Imaging of Plate Defects by Laser-Based Ultrasonic Techniques

  • Park, Junpil;Lim, Juyoung;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.435-440
    • /
    • 2014
  • Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.