• Title/Summary/Keyword: defect engineering

Search Result 2,235, Processing Time 0.033 seconds

A Study on the Two-Step CMP for Prevention of Over-polishing (과다연마 방지를 위한 두 단계 CMP에 관한 연구)

  • Shin, Woon-Ki;Kim, Hyoung-Jae;Park, Boum-Young;Park, Ki-Hyun;Joo, Suk-Bae;Kim, Young-Jin;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.525-526
    • /
    • 2007
  • Over-polishing is required to completely remove the material of top surface across whole wafer, in spite of a local dishing problem. This paper introduces the two-step CMP process using protective layer and high selectivity slurry, to reduce dishing amount and variation. The 30nm thick protective oxide layer was deposited on the pattern, and then polished with low selectivity slurry to partially remove the projected area while suppressing the removal rate of the recessed area. After the first step CMP process, high selectivity slurry was used to minimize the dishing amount and variation in pattern structure. Experimental result shows that two-step CMP process can be successfully applicable to reduce the dishing defect generated in over-polishing.

  • PDF

Case study of riser design using casting simulation in gravity cast method (중력주조 공법에서 주조해석 시뮬레이션을 이용한 압탕설계 사례 연구)

  • Ko, Sang-Bae;Han, Ki-Won;Kim, Hyung-Jun;Han, Tae-Soo;Han, Seong-Ryeol;Kim, kyung-A;Choi, Kye-Kwang;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.30-35
    • /
    • 2021
  • The casting method uses a mold to solidify a liquid metal to make a solid metal. Since it uses a liquid metal with the least deformation resistance, it has the characteristic that it can easily manufacture even a complex shape. However, the process of solidifying a liquid metal into a solid metal inevitably involves a volume change and contains internal defects such as shrinkage holes. Therefore, in the design of the casting plan, an excess volume called a pressurization compensates for the volume shrinkage. in the product, and it induces the shrinkage hole defects to occur in parts other than the product1). In this study, casting analysis was performed using casting analysis software (anycasting) in order to optimize the design of the tilting gravity casting method for automobile brackets. In particular, the filling and solidification analysis according to the shape and volume of the pressurized metal was conducted, and applied to the actual product to study the effect of the pressurized metal on the shrinkage defect. Through this study, it is possible to understand the effect of the pressure metal on shrinkage defects in the actual product and propose a design of the pressure metal that improves reliability and productivity.

On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes

  • Heidari, Farshad;Taheri, Keivan;Sheybani, Mehrdad;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.533-545
    • /
    • 2021
  • What is desirable in engineering is to bring the engineering model as close to reality as possible while the simplicity of model is also considered. In recent years, several studies have been performed on nanocomposites but some of these studies are somewhat far from reality. For example, in many of these studies, the carbon nanotubes (CNTs) are assumed completely straight, flawless and uniformly distributed throughout the matrix but by studying nanocomposites, we find that this is not the case. In this paper, three steps have been taken to bring the presented models for nanocomposites closer to reality. One is that assuming the straightness of nanotubes is removed and the waviness is considered. Also, the nanotubes are not considered to be pristine and the influence of defect is included in accordance with reality. In addition, the approximation of uniform distribution of nanotubes is ignored and according to experimental observations, the effect of nanotube aggregation is considered. As far as we know, this is the first study on these three topics together in an article. Moreover, we also include the size effects in our models for nanocomposites. To show the accuracy of our models, our results are calibrated with experimental results and compared with theoretical model. For numerical examples, we present the buckling behaviors of nanocomposites including the size effects using nonlocal theory and compare the results of our models with the results of models with above-mentioned approximations.

Electrical Characteristics and Deep Level Traps of 4H-SiC MPS Diodes with Different Barrier Heights (전위 장벽에 따른 4H-SiC MPS 소자의 전기적 특성과 깊은 준위 결함)

  • Byun, Dong-Wook;Lee, Hyung-Jin;Lee, Hee-Jae;Lee, Geon-Hee;Shin, Myeong-Cheol;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.306-312
    • /
    • 2022
  • We investigated electrical properties and deep level traps in 4H-SiC merged PiN Schottky (MPS) diodes with different barrier heights by different PN ratios and metallization annealing temperatures. The barrier heights of MPS diodes were obtained in IV and CV characteristics. The leakage current increased with the lowering barrier height, resulting in 10 times larger current. Additionally, the deep level traps (Z1/2 and RD1/2) were revealed by deep level transient spectroscopy (DLTS) measurement in four MPS diodes. Based on DLTS results, the trap energy levels were found to be shallow level by 22~28% with lower barrier height It could confirm the dependence of the defect level and concentration determined by DLTS on the Schottky barrier height and may lead to incorrect results regarding deep level trap parameters with small barrier heights.

The Impact of N-Ion Implantation on Deep-Level Defects and Carrier Lifetime in 4H-SiC SBDs (N-이온주입이 4H-SiC SBDs의 깊은 준위 결함 및 소수 캐리어 수명에 미치는 영향)

  • Myeong-cheol Shin;Geon-Hee Lee;Ye-Hwan Kang;Jong-Min Oh;Weon Ho Shin;San-Mo Koo
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.556-560
    • /
    • 2023
  • In this study, the impact of Nitrogen implantation process on deep-level defects and lifetime in 4H-SiC Epi surfaces was comparatively analyzed. Deep Level Transient Spectroscopy (DLTS) and Time Resolved Photoluminescence (TR-PL) were employed to measure deep-level defects and carrier lifetime. As-grown Schottky Barrier Diodes (SBDs) exhibited energy levels at 0.16 eV, 0.67 eV, and 1.54 eV, while for implantation SBD, defects at 0.15 eV were observed. This indicates a reduction in defects associated with energy levels Z1/2 and EH6/7, known as lifetime killers, as impurities from nitrogen implantation replace titanium and carbon vacancies.

Preventing Plasma Degradation of Plasma Resistant Ceramics via Surface Polishing (내플라즈마성 세라믹의 표면연마를 통한 플라즈마 열화방지)

  • Jae Ho Choi;Young Min Byun;Hyeong Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2023
  • Plasma-resistant ceramic (PRC) is a material used to prevent internal damage in plasma processing equipment for semiconductors and displays. The challenge is to suppress particles falling off from damaged surfaces and increase retention time in order to improve productivity and introduce the latest miniaturization process. Here, we confirmed the effect of suppressing plasma deterioration and reducing the etch rate through surface treatment of existing PRC with an initial illumination level of 200 nm. In particular, quartz glass showed a decrease in etch rate of up to 10%. Furthermore, it is believed that micro-scale secondary particles formed on the microstructure of each material grow as crystals during the fluoridation process. This is a factor that can act as a killer defect when dropped, and is an essential consideration when analyzing plasma resistance. The plasma etching suppression effect of the initial illumination is thought to be due to partial over etching at the dihedral angle of the material due to the sputtering of re-emission of Ar+-based cations. This means that plasma damage due to densification can also be interpreted in existing PRC studies. The research results are significant in that they present surface treatment conditions that can be directly applied to existing PRC for mass production and a new perspective to analyze plasma resistance in addition to simple etching rates.

  • PDF

Development of Mold for Coupling Parts for Drum Washing Machine (드럼세탁기용 커플링 부품 다이캐스팅 금형개발)

  • Park, Jong-Nam;Noh, Seung-Hee;Lee, Dong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.482-489
    • /
    • 2020
  • This study conducted a prototype development and evaluation by performing die-casting mold design, mold manufacturing, and injection condition optimization based on flow and solidification analysis to meet the needs of the coupling parts produced by die casting. Through flow analysis, the injection conditions suitable for 100% filling in the cavity were found to be a molten metal temperature of 670 ℃, injection speed of 1.164 m/s, and filling pressure of 6.324~18.77 MPa. In addition, solidification close to 100 % occurred in all four cavities when the solidification rate was 69.47 %. A defect inspection on the surface and inside the product revealed defects, such as poor molding and pores. In addition, the dimensions of the injected product were within the target tolerance and showed good results. Through the feedback of the results of flow and solidification analysis, it was possible to optimize the mold design, and the injection optimization conditions were confirmed to be a total cycle time of approximately 6.5 seconds. Good quality carrier parts with an average surface hardness of approximately 45 mm from the gate measured at 97.48(Hv) could be produced.

Fragment Combination From DNA Sequence Data Using Fuzzy Reasoning Method (퍼지 추론기법을 이용한 DNA 염기 서열의 단편결합)

  • Kim, Kwang-Baek;Park, Hyun-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2329-2334
    • /
    • 2006
  • In this paper, we proposed a method complementing failure of combining DNA fragments, defect of conventional contig assembly programs. In the proposed method, very long DNA sequence data are made into a prototype of fragment of about 700 bases that can be analyzed by automatic sequence analyzer at one time, and then matching ratio is calculated by comparing a standard prototype with 3 fragmented clones of about 700 bases generated by the PCR method. In this process, the time for calculation of matching ratio is reduced by Compute Agreement algorithm. Two candidates of combined fragments of every prototype are extracted by the degree of overlapping of calculated fragment pairs, and then degree of combination is decided using a fuzzy reasoning method that utilizes the matching ratios of each extracted fragment, and A, C, G, T membership degrees of each DNA sequence, and previous frequencies of each A, C, G, T. In this paper. DNA sequence combination is completed by the iteration of the process to combine decided optimal test fragments until no fragment remains. For the experiments, fragments or about 700 bases were generated from each sequence of 10,000 bases and 100,000 bases extracted from 'PCC6803', complete protein genome. From the experiments by applying random notations on these fragments, we could see that the proposed method was faster than FAP program, and combination failure, defect of conventional contig assembly programs, did not occur.

Wound Healing Effect of Bacterial Synthesized Cellulose on Full Thickness Skin Defect in the Rat (박테리아 유래 셀룰로오스가 백서의 창상치유에 미치는 영향)

  • Park, Sang-Uk;Lee, Byung-Kwon;Kim, Mi-Sun;Park, Kwan-Kyu;Sung, Woo-Jung;Kim, Hyun-Yeon;Kim, Peter Chan-Woo;Shim, Jeong-Su;Lee, Yong-Jig;Kim, Seong-Ho;Kim, In-Ho;Park, Dae-Hwan
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.733-739
    • /
    • 2011
  • Purpose: Cellulose is a natural substance from plants or bacteria. It is known that bacterial synthesized cellulose has an effect of wound healing. The aim of this study is to show the effect of bacterial synthesized cellulose from citrus on wound healing. Methods: Three full-thickness skin defects were made on the back of Sprague-Dawley rats. Three wounds were treated by vaseline gauze (Group V), Algisite $M^{(R)}$ (Group A) and bacterial synthesized cellulose from citrus (Group C) was used for dressing on skin defect on rats. We analyzed the gross, histological and biochemistry finding. Results: Group C showed more decrease of wound size compared to Group V (33% versus 7.2%) after 14 days. The histologic findings revealed Group C and Group A preceed the process of wound healing rather than Group V (More rapid collagen deposition and neovascularization and reduced inflammation). Also, the expressions of vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-${\beta}1$ were increased in the Group C and Group A compared with the Group V in 7 days. VEGF and TGF-${\beta}1$ expression were decreased in the Group C and Group A in 14 days, however Group V was not decreased at 14 day because of delayed wound healing process. Conclusion: Bacterial synthesized cellulose from citrus affects wound healing by reducing the inflammatory stage. And stimulates wound contracture by the deposition of extracellular matrix, thus preventing the formation of chronic wounds.

Measurement of Inner Defects and out of Plane Deformation of Pressure Vessel in Piping of Circulation System Using Shearography (전단간섭법을 이용한 배관 순환 시스템에서의 압력용기 내부결함 및 면외변형 측정)

  • Kang, Chan-Geun;Kim, Hyun-Ho;Jung, Hyun-Il;Choi, Tae-Ho;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.349-355
    • /
    • 2014
  • Wall thinning defects can occur in the pressure vessels used in a variety of industries. Such defects are related to the flow velocity. Considering the fact that such vessels constitute up to 70 or 80% of the plant structures in a power plant, it is important to measure internal defects as part of a safety evaluation. In this study, optical measurement were applied in a non-destructive evaluation using shearography to ensure the safety and improve the reliability of a power plant through the non-contact, non-destructive evaluation of pressure vessels. In order to verify whether the pressure vessels contained faults, experimental and analytical investigation were conducted to measure any internal defects and out-of-plane deformation from inner temperature changes and pressure changes in the piping of the circulation system. The most important factors in this research were the thickness, width, and length of a defect. An increase in these could confirm an increase in the deformation. Thus, internal defects in a pressure vessel were measured using shearography, which made it possible to ensure the reliability and integrity of the pipe.