• Title/Summary/Keyword: defect engineering

Search Result 2,235, Processing Time 0.029 seconds

Condition assessment model for residential road networks

  • Salman, Alaa;Sodangi, Mahmoud;Omar, Ahmed;Alrifai, Moath
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.361-378
    • /
    • 2021
  • While the pavement rating system is being utilized for periodic road condition assessment in the Eastern Region municipality of Saudi Arabia, the condition assessment is costly, time-consuming, and not comprehensive as only few parts of the road are randomly selected for the assessment. Thus, this study is aimed at developing a condition assessment model for a specific sample of a residential road network in Dammam City based on an individual road and a road network. The model was developed using the Analytical Hierarchy Process (AHP) according to the defect types and their levels of severity. The defects were arranged according to four categories: structure, construction, environmental, and miscellaneous, which was adopted from sewer condition coding systems. The developed model was validated by municipality experts and was adjudged to be acceptable and more economical compared to results from the Eastern region municipality (Saudi Arabia) model. The outcome of this paper can assist with the allocation of the government's budget for maintenance and capital programs across all Saudi municipalities through maintaining road infrastructure assets at the required level of services.

Numerical Analyses on the Formation, Propagation, and Deformation of Landslide Tsunami Using LS-DYNA and NWT

  • Seo, Minjang;Yeom, Gyeong-Seon;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • Generally, tsunamis are generated by the rapid crustal movements of the ocean floor. Other factors of tsunami generation include landslides on coastal and ocean floor slopes, glacier collapses, and meteorite collisions. In this study, two numerical analyses were conducted to examine the formation, propagation, and deformation properties of landslide tsunamis. First, LS-DYNA was adopted to simulate the formation and propagation processes of tsunamis generated by dropping rigid bodies. The generated tsunamis had smaller wave heights and wider waveforms during their propagation, and their waveforms and flow velocities resembled those of theoretical solitary waves after a certain distance. Second, after the formation of the landslide tsunami, a tsunami based on the solitary wave approximation theory was generated in a numerical wave tank (NWT) with a computational domain that considered the stability/steady phase. The comparison of two numerical analysis results over a certain distance indicated that the waveform and flow velocity were approximately equal, and the maximum wave pressures acting on the upright wall also exhibited similar distributions. Therefore, an effective numerical model such as LS-DYNA was necessary to analyze the formation and initial deformations of the landslide tsunami, while an NWT with the wave generation method based on the solitary wave approximation theory was sufficient above a certain distance.

Research on a novel shear lead damper: Experiment study and design method

  • Chong, Rong; Wenkai, Tian;Peng, Wang;Qingxuan, Shi
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.865-876
    • /
    • 2022
  • The slit members have lower strength and lower stiffness, which might lead to lower energy dissipation. In order to improve the seismic performance of the slit members, the paper proposes the shear lead damper, which has stable performance and small deformation energy dissipation capacity. Therefore, the shear lead damper can set in the vertical silts of the slit member to transmit the shear force and improve energy dissipation, which is suitable for the slit member. Initially, the symmetrical teeth-shaped lead damper was tested and analyzed. Then the staggered teeth-shaped lead dampers were developed and analyzed, based on the defect analysis and build improvements of the symmetrical specimen. Based on the parameter analysis, the main influence factors of hysteretic performance are the internal teeth, the steel baffles, and the width and length of damper. Finally, the theoretical analysis was presented on the hysteretic curve. And the skeleton curve and hysteresis path were identified. Based on the above theoretical analysis, the design method was proposed, including the damping force, the hysteresis model and the design recommendations.

Nano-graphene oxide damping behavior in polycarbonate coated on GFRP

  • Mohammad, Afzali;Yasser, Rostamiyan;Pooya, Esmaeili
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.823-829
    • /
    • 2022
  • This study considered the experimental parameters (Nano-graphene oxide reinforced polycarbonate, GFRP) under low-velocity impact load and vibration analysis. The effect of nano-graphene oxide (NGO) on a polycarbonate-based composite was studied. Two test procedures were adopted to obtain experimental results, vibration analysis. The mechanical tests were performed on damaged and non-damaged specimens to determine the damaging effect on the composite specimens. After the test was carried out, the effect of NGO was measured and damping factors were ascertained experimentally. 0. 2 wt% NGO was determined as the optimum amount that best affected the Vibration Analysis. The experiments revealed that the composite's damping properties were increased by adding the nanoparticles to 0.25 wt% and decreased slightly for the specimens with the highest nanoparticles content. Cyclic sinus loading was applied at a frequency of 3.5 Hz. This paper study the frequency effect of 3.5khz frequency damage on mechanical results. Found that high frequency will worthlessly affect the fatigue life in NGO/polycarbonate composite. In 3.5 Hz frequency, it was chosen to decrease the heat by frequency. Transmission electron microscopy (TEM) micrographs were used to investigate the distribution of NGO on the polycarbonate matrix and revealed a homogeneous mixture of nano-composites and strong bonding between NGO and the polycarbonate which increased the damping properties and decreased vibration. Finally, experimental modal analysis was conducted after the high-velocity impact damage process to investigate the defect on the NGO polycarbonate composites.

Influence of oil pipe corrosion defects on the sealing performance of annular BOP

  • Dong, Liangliang;Tang, Yuan;Wang, Liuyang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.337-344
    • /
    • 2022
  • Due to corrosion defects on the surface of the oil pipe, the sealing performance of the annular blowout preventer (BOP) decreases, and the leakage of toxic and harmful gases such as H2S and SO2 will threaten the safety of operators on the well. Therefore, this paper establishes the FE model for evaluating the sealing performance of BOP-oil pipe corrosion defects, which is based on the rubber large deformation theory and rubber core sealing mechanism, and designs the experiment of BOP sealing performance to verify the accuracy of the FE model. The sealing performance of BOP sealing oil pipe with corrosion defects is studied. The research results show that the sealing performance of BOP is more sensitive to the axial size of corrosion defects. With the increase of oil pipe outer diameter, the critical size of defects increases continuously. The sensitivity of radial and depth dimensions is low, When for 88.9 mm outer diameter oil pipe, the axial critical size of corrosion defect is 20 mm, the radial critical size is 16 mm and the critical depth is 2 mm. Fit the formula between the outer diameter of oil pipe and the piston increment. According to the formula, the operator can calculate the piston stroke increment required by the BOP to complete the sealing when the oil pipe is corroded.

Development of Automated Welding System for Construction: Focused on Robotic Arm Operation for Varying Weave Patterns

  • Doyun Lee;Guang-Yu Nie;Aman Ahmed;Kevin Han
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • Welding is a significant part of the construction industry. Since most high-rise building construction structures rely on a robust metal frame welded together, welding defect can damage welded structures and is critical to safety and quality. Despite its importance and heavy usage in construction, the labor shortage of welders has been a continuous challenge to the construction industry. To deal with the labor shortage, the ultimate goal of this study is to design and develop an automated robotic welding system composed of a welding machine, unmanned ground vehicle (UGV), robotic arm, and visual sensors. This paper proposes and focuses on automated weaving using the robotic arm. For automated welding operation, a microcontroller is used to control the switch and is added to a welding torch by physically modifying the hardware. Varying weave patterns are mathematically programmed. The automated weaving is tested using a brush pen and a ballpoint pen to clearly see the patterns and detect any changes in vertical forces by the arm during weaving. The results show that the weave patterns have sufficiently high consistency and precision to be used in the actual welding. Lastly, actual welding was performed, and the results are presented.

A study on the development of an automated device for the transportation of roof tiles using electromagnetic grippers (전자석 그리퍼를 이용한 기와 받침틀 이송 자동화 장비 개발에 관한 연구)

  • Byung-Soo Kang;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • This study aims to enhance the price and quality competitiveness of imported tiles by developing a robotic tile production automation line. The development process involved several steps, such as requirement analysis, derivation of technical specifications, conceptual design, engineering feasibility review, detailed design, and production. Emphasis was placed on the transfer process of the tiles' molds, and technological advancements were achieved through engineering interpretation, feasibility review, and performance evaluation. The developed automation system incorporates key specifications to ensure a transfer success rate of over 90%, thereby ensuring stable transportation of the tiles and minimizing defect rates during production. The maximum weight capacity for tile pick-up was set above 6 kg, allowing effective handling of tiles weighing 6 kg or less in automated tasks. Furthermore, the system enables safe and precise movement of the tiles to the desired location, with a transfer distance of at least 1.3 m and a transfer speed exceeding 0.2 m/sec, thereby increasing production efficiency.

A study on transmission line configuration for structural health monitoring using electromagnetic waves

  • Dongsoo Lee;Dong-Ju Kim;Jinwook Kim;Jong-Sub Lee;Sang Yeob Kim
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Structural health monitoring (SHM) of concrete structures is necessary because structural safety is directly linked to life safety. This study proposes a transmission line configuration for SHM based on time domain reflectometry (TDR). For this purpose, six transmission lines consisting of electrical wires, rebars, and joints were prepared. The TDR waveforms were measured and analyzed in air and concrete using six transmission lines to select the most suitable configuration. A two-line wire with joints was selected as the optimal transmission line for SHM because it exhibited the highest sensitivity among the configurations. Experiments to apply SHM were performed on defective concrete blocks containing an optimal transmission line. The results showed that the defect locations in concrete were precisely investigated using TDR waveform analysis. The distances estimated from the TDR waveform were similar to the measured distances for the locations of the defects and joints in the concrete blocks. This study suggests that a transmission line consisting of two-line wires and joints may be an effective non-destructive evaluation tool for assessing the structural health of concrete.

Preparation of the SiO2 Films with Low-Dit by Low Temperature Oxidation Process (저온 산화공정에 의해 낮은 Dit를 갖는 실리콘 산화막의 제조)

  • Jeon, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.990-997
    • /
    • 1998
  • In this work, the $SiO_2$ films on the silicon substrate with different orientations were first prepared by the low temperature process using the ECR plasma diffusion as a function of microwave power and oxidation time. Before and after thermal treatment, the surface morphology, Si/O ratio from physicochemical properties, and the electrical properties of the oxide films were also investigated. The oxidation rate increased with microwave power, while surface morphology showed the nonuniform due to etching. The film quality, therefore, was lowered with increasing the defect by etching and the content of positive oxide ions in the oxide films from bulk by higher self-DC bias. The content of positive oxide ions in the oxide films with different Si orientations showed Si(100) < Si(111) < poly Si. The defects in $Si/SiO_2$ interface of $SiO_2$ film could be decreased by annealing, while $Q_{it}$ and $Q_f$ were independent of thermal treatment and the dependent on concentration of reactive oxide ions and self-DC bias of substrate. At microwave power of 300, and 400 W, the high quality $SiO_2$ film that had lower surface roughness and defect in $Si/SiO_2$ interface was obtained. The value of interface trap density, then, was ${\sim}9{\times}10^{10}cm^{-2}eV^{-1}$.

  • PDF

Strength Properties of Wooden Retaining Walls Manufactured with Pinus rigida Miller

  • Park, Jun-Chul;Kim, Keon-Ho;Lee, Dong-Heub;Son, Dong-Won;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.140-147
    • /
    • 2011
  • The strength properties of wooden retaining wall which was made with pitch pine were evaluated. Wooden retaining wall was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole). The length of the front stretcher of the retaining wall was 3,000 mm. The distance between the headers (the notched member) is 1,000 mm in center and is 900 mm in side. There were connections every 2,000 mm because actually the length of stretcher is limited in the retaining wall. The strength test was carried out according to connection type because the section between stretchers can act as a defect. A result of the strength test according to connection type confirms that connection does not act as defect because the strength of retaining wall in single stretcher is similar to that in the section between stretchers. The strength test of the wooden retaining wall was carried out in 5 types according to the condition of the base section. When the upper soil pressure was 9.8 kN/$m^2$, the maximum load of the retaining wall fixing the front foundation shows higher values than those of others. But the total deformation is lower in the retaining wall not to fix a base section than in that to fix a base section. It is thought that the retaining wall not to fix a base section shows low value because the deformation is distributed throughout the retaining wall and it is confirmed that the soil pressure affects supporting the structure because the deformation of the retaining wall under low pressure is 3~4 fold higher than those of others. The failure mode of the retaining wall is the overturning type because the high section is deformed. Mostly, the failure mode is the separation of the header in the notched section.