DOI QR코드

DOI QR Code

Nano-graphene oxide damping behavior in polycarbonate coated on GFRP

  • Mohammad, Afzali (Department of Mechanical Engineering, Kashan University) ;
  • Yasser, Rostamiyan (Department of Mechanical Engineering, Sari Branch, Islamic Azad University) ;
  • Pooya, Esmaeili (Department of Mechanical Engineering, Sari Branch, Islamic Azad University)
  • Received : 2021.12.09
  • Accepted : 2022.11.30
  • Published : 2022.12.25

Abstract

This study considered the experimental parameters (Nano-graphene oxide reinforced polycarbonate, GFRP) under low-velocity impact load and vibration analysis. The effect of nano-graphene oxide (NGO) on a polycarbonate-based composite was studied. Two test procedures were adopted to obtain experimental results, vibration analysis. The mechanical tests were performed on damaged and non-damaged specimens to determine the damaging effect on the composite specimens. After the test was carried out, the effect of NGO was measured and damping factors were ascertained experimentally. 0. 2 wt% NGO was determined as the optimum amount that best affected the Vibration Analysis. The experiments revealed that the composite's damping properties were increased by adding the nanoparticles to 0.25 wt% and decreased slightly for the specimens with the highest nanoparticles content. Cyclic sinus loading was applied at a frequency of 3.5 Hz. This paper study the frequency effect of 3.5khz frequency damage on mechanical results. Found that high frequency will worthlessly affect the fatigue life in NGO/polycarbonate composite. In 3.5 Hz frequency, it was chosen to decrease the heat by frequency. Transmission electron microscopy (TEM) micrographs were used to investigate the distribution of NGO on the polycarbonate matrix and revealed a homogeneous mixture of nano-composites and strong bonding between NGO and the polycarbonate which increased the damping properties and decreased vibration. Finally, experimental modal analysis was conducted after the high-velocity impact damage process to investigate the defect on the NGO polycarbonate composites.

Keywords

References

  1. Abbasi, S., Carreau, P.J. and Derdouri, A. (2010), "Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties", Polym., 51(4), 922-935. https://doi.org/10.1016/j.polymer.2009.12.041.
  2. Abzan, M.S., Mirzaee, R., Ahmadi, S., Karimpour-Motlagh, N. and Khonakdar, H.A. (2021), "Affected polymer layer and thermo-mechanical behavior correlation in nylon6/polycarbonate/graphene-oxide nanocomposites: A quantitative study of polymorphism", Thermochimica Acta, 703, 178995. https://doi.org/10.1016/j.tca.2021.178995.
  3. Afzali, M. and Rostamiyan, Y. (2020), "Study the effect of machining process and Nano Sio2 on GFRP mechanical performances", Struct. Eng. Mech., 76(2), 175-191. https://doi.org/10.12989/sem.2020.76.2.175.
  4. Ahmed, A., Asija, N., Chauhan, H. and Bhatnagar, N. (2019), "Study of polycarbonate based nano-composites at high strain rate impact", Procedia Struct. Integr., 14, 507-513. https://doi.org/10.1016/j.prostr.2019.05.061.
  5. Alonso, U., Goirigolzarri, B., Ostra, T. and de Lacalle, L.N.L. (2019), "Low frequency vibration assisted drilling of PC1000 polycarbonate", Procedia Manuf., 41, 407-414. https://doi.org/10.1016/j.promfg.2019.09.026.
  6. Arias, N. and Jaramillo, F. (2020), "Highly reflective aluminum films on polycarbonate substrates by physical vapor deposition", Appl. Surf. Sci., 505, 144596. https://doi.org/10.1016/j.apsusc.2019.144596.
  7. Bagotia, N., Choudhary, V. and Sharma, D.K. (2018), "Superior electrical, mechanical and electromagnetic interference shielding properties of polycarbonate/ethylene-methyl acrylatein situ reduced graphene oxide nanocomposites", J. Mater. Sci., 53(23), 16047-16061. https://doi.org/10.1007/s10853-018-2749-7.
  8. Cipriani, E., Zanetti, M., Brunella, V., Costa, L. and Bracco, P. (2012), "Thermoplastic polyurethanes with polycarbonate soft phase: Effect of thermal treatment on phase morphology", Polym. Degrad. Stab., 97(9), 1794-1800. https://doi.org/10.1016/j.polymdegradstab.2012.06.004.
  9. Garcia, C., Wilson, J., Trendafilova, I. and Yang, L. (2017), "Vibratory behaviour of glass fibre reinforced polymer (GFRP) interleaved with nylon nanofibers", Compos. Struct., 176, 923-932. https://doi.org/10.1016/j.compstruct.2017.06.018.
  10. Gouda, M.H., Gouveia, W., Afonso, M.L., Sljukic, B., El Essawy, N.A., Nassr, A.A.A. and Santos, D.M.F. (2019), "Poly(vinyl alcohol)-based crosslinked ternary polymer blend doped with sulfonated graphene oxide as a sustainable composite membrane for direct borohydride fuel cells", J. Power Sour., 432, 92-101. https://doi.org/10.1016/j.jpowsour.2019.05.078.
  11. Hacioglu, F., Tayfun, U., Ozdemir, T. and Tincer, T. (2021), "Characterization of carbon fiber and glass fiber reinforced polycarbonate composites and their behavior under gamma irradiation", Progr. Nucl. Energy, 134, 103665. https://doi.org/10.1016/j.pnucene.2021.103665.
  12. Hemmatnezhad, M., Rahimi, G.H., Tajik, M. and Pellicano, F. (2015), "Experimental, numerical and analytical investigation of free vibrational behavior of GFRP-stiffened composite cylindrical shells", Compos. Struct., 120, 509-518. https://doi.org/10.1016/j.compstruct.2014.10.011.
  13. Hu, W., Wang, Y., Yu, J., Yen, C.F. and Bobaru, F. (2013), "Impact damage on a thin glass plate with a thin polycarbonate backing", Int. J. Impact Eng., 62, 152-165. https://doi.org/10.1016/j.ijimpeng.2013.07.001.
  14. Kamps, J.H., Scheffler, C., Simon, F., van der Heijden, R. and Verghese, N. (2018), "Functional polycarbonates for improved adhesion to carbon fibre", Compos. Sci. Technol., 167, 448-455. https://doi.org/10.1016/j.compscitech.2018.08.035.
  15. Kayano, Y., Keskkula, H. and Paul, D.R. (1998), "Fracture behaviour of polycarbonate blends with a core-shell impact modifier", Polym., 39(4), 821-834. https://doi.org/10.1016/S0032-3861(97)00361-3.
  16. Krausz, T., serban, D.A., Negru, R.M., Radu, A.G. and Marsavina, L. (2021), "The effect of strain rate and temperature on the mechanical properties of polycarbonate composites", Mater. Today: Proc., 45, 4211-4215. https://doi.org/10.1016/j.matpr.2020.12.121.
  17. Lv, D., Li, P., Zhou, L., Wang, R., Chen, H., Li, X., Zhao, Y., Wang, J. and Huang, N. (2021), "Synthesis, evaluation of phospholipid biomimetic polycarbonate for potential cardiovascular stents coating", React. Funct. Polym., 163, 104897. https://doi.org/10.1016/j.reactfunctpolym.2021.104897.
  18. Morales-Zamudio, L., Lozano, T., Caballero-Briones, F., Zamudio, M.A., Angeles-San Martin, M. E., de Lira-Gomez, P., ... & Sanchez-Valdes, S. (2021), "Structure and mechanical properties of graphene oxide-reinforced polycarbonate", Mater. Chem. Phys., 261, 124180. https://doi.org/10.1016/j.matchemphys.2020.124180.
  19. Najafi, F., Wang, G., Cui, T., Anand, A., Mukherjee, S., Filleter, T., Sain, M. and Singh, C.V. (2021), "Fatigue resistance of atomically thin graphene oxide", Carbon, 183, 780-788. https://doi.org/10.1016/j.carbon.2021.07.062.
  20. Rostamiyan, Y., Afzali, M. and Azadi, R. (2017), "Experimental study on the effect of Nano Sio2 on the milled GFRP composite and under buckling load", The 2017 World Congress on Advances in Nano, Bio, Robotics and Energy, August-September, Korea.
  21. Sharma, S., Rawal, J., Dhakate, S.R. and Singh, B.P. (2020), "Synergistic bridging effects of graphene oxide and carbon nanotube on mechanical properties of aramid fiber reinforced polycarbonate composite tape", Compos. Sci. Technol., 199, 108370. https://doi.org/10.1016/j.compscitech.2020.108370.
  22. Sreekanth, T.G., Senthilkumar, M. and Reddy, S.M. (2021), "Vibration-based delamination evaluation in GFRP composite beams using ANN", Polymer. Polym. Compos., 29, S317-S324. https://doi.org/10.1177/09673911211003399.
  23. Wang, B., Lu, H., Tan, G. and Chen, W. (2003), "Strength of damaged polycarbonate after fatigue", Theor. Appl. Fract. Mech., 39(2), 163-169. https://doi.org/10.1016/S0167-8442(02)00156-8.
  24. Wang, Z.Z., Gu, P. and Zhang, Z. (2010), "Indentation and scratch behavior of nano-SiO2/polycarbonate composite coating at the micro/nano-scale", Wear., 269(1), 21-25. https://doi.org/10.1016/j.wear.2010.03.003.
  25. Wongsamut, C., Suwanpreedee, R. and Manuspiya, H. (2020), "Thermoplastic polyurethane-based polycarbonate diol hot melt adhesives: The effect of hard-soft segment ratio on adhesion properties", Int. J. Adhes. Adhesiv., 102, 102677. https://doi.org/10.1016/j.ijadhadh.2020.102677.
  26. Yao, T.T., Zhang, X.F., Zhang, W.S., Liu, Y.T., Liu, Q. and Wu, G.P. (2021), "Controlled attachment of polycarbonate nanoparticles on carbon fibers for increased resin impregnation and interfacial adhesion in carbon fiber composites", Compos. Part B: Eng., 224, 109218. https://doi.org/10.1016/j.compositesb.2021.109218.
  27. Zhang, J., Koubaa, A., Xing, D., Liu, W., Wang, H., Wang, X. and Wang, Q. (2020), "High-performance lignocellulose/polycarbonate biocomposites fabricated by in situ reaction: Structure and properties", Compos. Part A: Appl. Sci. Manuf., 138, 106068. https://doi.org/10.1016/j.compositesa.2020.106068.