• 제목/요약/키워드: default prediction

검색결과 60건 처리시간 0.028초

주택시장 변화가 규모별 건설업체 부실화에 미치는 영향 분석 (Influence of Housing Market Changes on Construction Company Insolvency)

  • 장호면
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.3260-3269
    • /
    • 2014
  • 타 산업들과의 연계성이 강한 건설업체가 도산할 경우 타 산업시장의 경기악화를 초래할 수 있어, 시장 환경 변화에 따른 건설업체의 부실화 예측모형 연구가 중요하게 다뤄지고 있다. 하지만 건설업체 부실화 예측에 앞서 부실화에 기인하는 요소에 관한 연구가 선행되어야 함에도 불구하고 이와 같은 영향 변수들에 대한 연구가 부족한 실정이다. 이에 본 논문에서는 건설업체 포트폴리오의 큰 비중을 차지하는 주택시장 변화가 규모별 건설업체의 부실화에 미치는 영향을 벡터오차수정모형을 통해 분석하고자 한다. 이에 건설업체를 규모별로 2011년 시공능력평가순위 50위권 기업 중 상위 10개와 하위 10개로 구분하였으며, 각 업체의 부실화를 나타내는 예상부도확률을 KMV 모형을 통해 측정하였다. 주택시장의 변화를 대리하는 변수로 2001년부터 2010년까지의 주택매매가격지수, 주택전세가격지수, 전세매매가격비율을 활용하였다. KMV모형을 활용하여 규모별 건설업체의 예상부도확률을 산출한 결과 선험적으로 인지하고 있듯이 상위 10개의 대규모 건설업체들이 상대적으로 규모가 작은 건설업체에 비해 경영상태가 양호한 것을 확인 할 수 있었다. 또한 벡타오차수정모형을 구성, 충격반응분석을 수행한 결과 주택시장 경기변동에 따라 대규모 업체의 부실화 정도가 중소 건설업체에 비해 더 심각함을 확인할 수 있었다.

SMOKE 모델의 입력 모듈 변경에 따른 영향 분석 (Assessment of Changed Input Modules with SMOKE Model)

  • 김지영;김정수;홍지형;정동일;반수진;이용미
    • 한국대기환경학회지
    • /
    • 제24권3호
    • /
    • pp.284-299
    • /
    • 2008
  • Emission input modules was developed to produce emission input data and change some profiles for Sparse Matrix Operator Kernel Emissions (SMOKE) using Clean Air Policy Support System (CAPSS)'s activities and previous studies. Specially, this study was focused to improve chemical speciation and temporal allocation profiles of SMOKE. At first, SCC cord mapping was done. 579 SCC cords of CAPSS were matched with EPA's one. Temporal allocation profiles were changed using CAPSS monthly activities. And Chemical speciation profiles were substituted using Kang et al. (2000) and Lee et al. (2005) studies and Kim et al. (2005) study. Simulation in Seoul Metropolitan Area (Seoul, Incheon, Gyeonggi) using MM5, SMOKE and CMAQ modeling system was done for effect analysis of changed input modules of SMOKE. Emission model results adjusted with new input modules were slightly changed as compared to using EPA's default modules. SMOKE outputs shows that aldehyde emissions were decreased 4.78% after changing chemical profiles, increased 0.85% after implementing new temporal profiles. Toluene emissions were decreased 18.56% by changing chemical speciation profiles, increased 0.67% by replacing temporal profiles as well. Simulated results of air quality were also slightly elevated by using new input modules. Continuous accumulation of domestic data and studies to develop input system for air quality modeling would produce more improved results of air quality prediction.

기준값 변화에 따른 기업신용평가모형 성능 비교 (Comparisons of the corporate credit rating model power under various conditions)

  • 하정철;김수진
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1207-1216
    • /
    • 2015
  • 본 연구는 기업신용평가모형 중 재무모형을 개발하는데 있어 여러 조건들의 기준값을 변화시킴에 따라 모형 성능이 어떻게 달라지는지 확인하고 자료의 특성에 맞는 조건을 제안하는데 목적이 있다. 기준값의 변화에 따른 모형의 성능은 정확도비를 기준으로 측정하고, 반복적인 절차를 간편하게 하기 위해 SAS/MACRO를 활용하였다. 재무비율을 구간에 따라 점수화한 신용평점모형과 유의한 재무비율로 로지스틱 회귀모형을 사용한 부실예측모형으로 구성되는 재무모형에서 기준값의 변화에 따른 성능 비교 결과, 부실예측모형이 신용평점모형보다 좋은 것으로 나타났다. 기업규모에 따른 특성비교에서는 재무제표의 신뢰도가 높고 비재무적인 요소에 영향을 적게 받는 대규모 기업에서 모형의 성능이 좋을 뿐만 아니라 재정학적인 의미가 뛰어난 통계모형이 만들어지는 것을 확인할 수 있었다. 규모가 작아질수록 부실예측모형과 신용평점모형의 성능 차이가 커지는 것과 이상값이 많아져서 모형의 안정성이 떨어지는 것을 알 수 있었다.

뉴스벤더 모델을 이용한 최적 대출금 한도 관리에 관한 연구 (A Study on the Optimal Loan Limit Management Using the Newsvendor Model)

  • 신정훈;황승준
    • 산업경영시스템학회지
    • /
    • 제38권3호
    • /
    • pp.39-48
    • /
    • 2015
  • In this study, granting the optimal loan limit on SME (Small and Medium Enterprise) loans of financial institutions was proposed using the traditional newsvendor model. This study was the first domestic case study that applied the newsvendor model that was mainly used to calculate the optimum order quantity under some uncertain demands to the calculation of the loan limit (debt ceiling) of institutions. The method presented in this study made it possible to calculate the loan limit (debt ceiling) to maximize the revenue of a financial institution using probability functions, applied the newsvendor model setting the order volume of merchandise goods as the loan product order volume of the financial institution, and proposed, through the analysis of empirical data, the availability of additional loan to the borrower and the reduction of the debt ceiling and a management method for the recovery of the borrower who could not generate profit. In addition, the profit based loan money management model presented in this study also demonstrated that it also contributed to some extent to the prediction of the bankruptcy of the borrowing SME (Small and Medium Enterprise), as well as the calculation of the loan limit based on profit, by deriving the result values that the borrowing SME (Small and Medium Enterprise) actually went through bankruptcy at later times once the model had generated a signal of loan recovery for them during the validation of empirical data. accordingly, The method presented in this study suggested a methodology to generated a signal of loan recovery to reduce the losses by the bankruptcy.

RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구 (Dynamic forecasts of bankruptcy with Recurrent Neural Network model)

  • 권혁건;이동규;신민수
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.139-153
    • /
    • 2017
  • 기업의 부도는 이해관계자들뿐 아니라 사회에도 경제적으로 큰 손실을 야기한다. 따라서 기업부도예측은 경영학 연구에 있어 중요한 연구주제 중 하나로 다뤄져 왔다. 기존의 연구에서는 부도 예측을 위해 다변량판별분석, 로짓분석, 신경망분석 등 다양한 방법론을 이용하여 모형의 부도 예측력을 높이고 과적합의 문제를 해결하고자 시도하였다. 하지만 기존의 연구들이 시간적 요소를 고려하지 않아 발생할 수 있는 문제점들을 갖고 있음에도 불구하고 부도 예측에 있어서 동적 모형을 이용한 연구는 활발히 진행되고 있지 않으며 따라서 동적 모형을 이용하여 부도예측모형이 더욱 개선될 여지가 있다는 점을 확인할 수 있었다. 이에 본 연구에서는 RNN(Recurrent Neural Network)을 이용하여 시계열 재무 데이터의 동적 변화를 반영한 모형을 만들었으며 기존의 부도예측모형들과의 비교분석을 통해 부도 예측력의 향상에 도움이 된다는 것을 확인할 수 있었다. 모형의 유용성을 검증하기 위해 KIS Value의 재무 데이터를 이용하여 실험을 수행하였고 비교모형으로는 다변량판별분석, 로짓분석, SVM, 인공신경망을 선정하였다. 실험 결과 제안된 모형이 비교 모형에 비해 우수한 예측력을 보이는 것으로 나타났다. 따라서 본 연구는 변수들의 변화를 포착하는 동적 모형을 부도예측에 새롭게 제안하여 부도예측 연구의 발전에 기여할 수 있을 것으로 기대된다.

회사채 신용등급 예측을 위한 SVM 앙상블학습 (Ensemble Learning with Support Vector Machines for Bond Rating)

  • 김명종
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.29-45
    • /
    • 2012
  • 회사채 신용등급은 투자자의 입장에서는 수익률 결정의 중요한 요소이며 기업의 입장에서는 자본비용 및 기업 가치와 관련된 중요한 재무의사결정사항으로 정교한 신용등급 예측 모형의 개발은 재무 및 회계 분야에서 오랫동안 전통적인 연구 주제가 되어왔다. 그러나, 회사채 신용등급 예측 모형의 성과와 관련된 가장 중요한 문제는 등급별 데이터의 불균형 문제이다. 예측 문제에 있어서 데이터 불균형(Data imbalance) 은 사용되는 표본이 특정 범주에 편중되었을 때 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류경계영역이 왜곡되므로 분류자의 학습성과가 저하되게 된다. 본 연구에서는 데이터 불균형 문제가 존재하는 다분류 문제를 효과적으로 해결하기 위한 다분류 기하평균 부스팅 기법 (Multiclass Geometric Mean-based Boosting MGM-Boost)을 제안하고자 한다. MGM-Boost 알고리즘은 부스팅 알고리즘에 기하평균 개념을 도입한 것으로 오분류된 표본에 대한 학습을 강화할 수 있으며 불균형 분포를 보이는 각 범주의 예측정확도를 동시에 고려한 학습이 가능하다는 장점이 있다. 회사채 신용등급 예측문제를 활용하여 MGM-Boost의 성과를 검증한 결과 SVM 및 AdaBoost 기법과 비교하여 통계적으로 유의적인 성과개선 효과를 보여주었으며 데이터 불균형 하에서도 벤치마킹 모형과 비교하여 견고한 학습성과를 나타냈다.

다양한 다분류 SVM을 적용한 기업채권평가 (Corporate Bond Rating Using Various Multiclass Support Vector Machines)

  • 안현철;김경재
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

재무비율의 극단치에 대한 통계적 분석 (Statistical Analysis of Extreme Values of Financial Ratios)

  • 주지환
    • 지식경영연구
    • /
    • 제22권2호
    • /
    • pp.247-268
    • /
    • 2021
  • 투자자들은 기업가치를 평가하기 위하여 재무비율을 활용하는데 특히 PER과 PBR은 적정 기업가치를 판단하는데 중요한 역할을 하는 대표적인 수치로 알려져 있다. 금융자료는 꼬리가 매우 두터운 형태의 분포를 따르는 경우가 많은데, PER과 PBR은 첨도가 매우 높으며 해당 재무비율의 극단치들은 기업의 다양한 이해관계자들의 의사결정 시 중요한 역할을 한다. 본 논문에서는 통계학의 극단치이론에서 주로 활용되는 GPD와 최근 새롭게 제안된 분포인 exGPD를 도입하고, 두 분포 간의 성능을 비교하기 위해 시뮬레이션을 수행하여 적합도를 살펴본 후 우측 꼬리에 속하는 90, 95, 99% 퍼센타일 값을 추정하여 실제 값과 비교한다. 다음으로 국내 증권시장에 상장된 정보기술군(IT) 기업들의 PER, PBR 자료에 근거하여 실증분석을 수행한다. 분석 결과 특히 PBR에서 exGPD가 GPD에 비해 자료의 우측 꼬리 영역을 보다 효과적으로 설명함을 확인하였다. 따라서, 재무비율에 기반한 기업가치평가 또는 위험관리 시 극단치의 특성을 효과적으로 반영할 수 있는 exGPD와 같은 분포를 활용한다면 꼬리 영역에 담긴 정보를 보다 정확하게 파악할 수 있다. 이는 기업 내부 위험관리자의 효과적인 지식경영을 돕고, 투자자를 비롯하여 다양한 외부 이해관계자들에게 유용한 지식을 제공할 수 있다.

이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가 (Feasibility of Deep Learning Algorithms for Binary Classification Problems)

  • 김기태;이보미;김종우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.95-108
    • /
    • 2017
  • 최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.

홍수조절지 건설 후 사격장 주변지역의 위해성예측 사례연구 (Prediction of Potential Risk Posed by a Military Gunnery Range after Flood Control Reservoir Construction)

  • 류혜림;한준경;남경필;배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권1호
    • /
    • pp.87-96
    • /
    • 2007
  • 본 연구는 경기도 소재 모 사격장의 주요 오염물질 여섯 가지에 대하여 홍수조절지가 건설된 이후 사격장 주변지역의 위해성을 예측하기 위하여 수행되었다. 해당 지역의 주요 오염물질 중 인체에 독성이 있는 화약물질 3종과 중금속 3종을 대상물질로 선정하였으며, 오염의 정도와 토지의 이용용도에 따라 네 지역으로 나누어 평가를 실시하였다. 위해성이 과대평가되는 것을 피하기 위하여 대상지역의 인문사회학적 특성 및 지반환경공학적 특성을 기반으로 노출경로모델(Conceptual Site Model)을 작성하였으며 각 노출경로에 따른 오염물질 이동모델 및 위해성 평가는 API's DSS(American Petroleum Institute's Decision Support System)를 이용하였다. 수용체나 지역의 특성을 하나의 값으로 대표할 수 없는 경우 위해성이 과소평가되는 것을 방지하기 위하여 가장 안전한 값을 사용하였다. 위해성 예측결과, 피탄지인 Ac 지역에서 TNT(Tri-Nitro-Toluene)와 카드뮴의 비발암위해도가 1을 조금 넘고, RDX(Royal Demolition Explosives)의 경우 50이 넘어, 대상지역 전체에 대한 총 비발암위해도는 62.828라는 매우 큰 값을 나타내었다. 한편, 발암위해도는 납이 약 $5\;{\times}\;10^{-4}$, 카드뮴이 약 $1\;{\times}\;10^{-3}$으로, 일반적으로 받아들여지는 발암위해도의 적정수준인 $10^{-4}{\sim}10^{-6}$에 비하여 $5{\sim}10$ 배 정도 크게 평가되었다. 이러한 위해성평가 결과를 통하여, 해당지역에 홍수조절지를 건설하기 전에 비발암물질과 발암물질 모두에 대한 즉각적인 복원사업이 진행되어야 하며, 홍수조절지 건설 후에도 사격장이 계속 운영될 경우 적절한 오염물질의 관리정책이 필요함을 알 수 있었다.