• 제목/요약/키워드: deep-learning dataset

검색결과 812건 처리시간 0.024초

DeepSDO: Solar event detection using deep-learning-based object detection methods

  • Baek, Ji-Hye;Kim, Sujin;Choi, Seonghwan;Park, Jongyeob;Kim, Jihun;Jo, Wonkeum;Kim, Dongil
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.46.2-46.2
    • /
    • 2021
  • We present solar event auto detection using deep-learning-based object detection algorithms and DeepSDO event dataset. DeepSDO event dataset is a new detection dataset with bounding boxed as ground-truth for three solar event (coronal holes, sunspots and prominences) features using Solar Dynamics Observatory data. To access the reliability of DeepSDO event dataset, we compared to HEK data. We train two representative object detection models, the Single Shot MultiBox Detector (SSD) and the Faster Region-based Convolutional Neural Network (R-CNN) with DeepSDO event dataset. We compared the performance of the two models for three solar events and this study demonstrates that deep learning-based object detection can successfully detect multiple types of solar events. In addition, we provide DeepSDO event dataset for further achievements event detection in solar physics.

  • PDF

딥러닝을 위한 마스크 착용 유형별 데이터셋 구축 및 검출 모델에 관한 연구 (The Study for Type of Mask Wearing Dataset for Deep learning and Detection Model)

  • 황호성;김동현;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권3호
    • /
    • pp.131-135
    • /
    • 2022
  • Due to COVID-19, Correct method of wearing mask is important to prevent COVID-19 and the other respiratory tract infections. And the deep learning technology in the image processing has been developed. The purpose of this study is to create the type of mask wearing dataset for deep learning models and select the deep learning model to detect the wearing mask correctly. The Image dataset is the 2,296 images acquired using a web crawler. Deep learning classification models provided by tensorflow are used to validate the dataset. And Object detection deep learning model YOLOs are used to select the detection deep learning model to detect the wearing mask correctly. In this process, this paper proposes to validate the type of mask wearing datasets and YOLOv5 is the effective model to detect the type of mask wearing. The experimental results show that reliable dataset is acquired and the YOLOv5 model effectively recognize type of mask wearing.

딥러닝 기반의 한글 폰트 연구를 위한 한글 폰트 데이터셋 (Hangul Font Dataset for Korean Font Research Based on Deep Learning)

  • 고홍희;이현수;석정재;;최재영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권2호
    • /
    • pp.73-78
    • /
    • 2021
  • 최근 딥러닝에 대한 관심이 증가하면서 이를 이용한 다양한 분야에서 연구가 진행되고 있다. 그러나 딥러닝 기반의 생성 모델을 이용하는 폰트의 자동 생성 연구들은 로마자 및 한자와 같은 몇 언어들에 국한되어 연구되고 있다. 한글 폰트 디자인은 매우 큰 시간과 비용이 들어가는 작업으로, 딥러닝을 이용하면 손쉽게 생성할 수 있다. 한글 폰트를 생성하는 연구는 딥러닝 기반의 생성 모델들과 발맞추기 위해 프로세스 자동화 관점에서 한글 폰트 데이터셋을 준비하는 것이 중요하다. 이를 위하여 본 논문에서는 딥러닝 기반의 한글 폰트 연구를 위한 한글 폰트 데이터셋을 제안하고. 그 데이터셋을 구성하는 방법을 기술한다. 본 논문에서 제안하는 한글 폰트 데이터셋을 기반으로 딥러닝 한글 폰트 생성 어플리케이션에 적용하는 과정을 통해 제안하는 데이터셋 구성의 유용성을 보인다.

A Manually Captured and Modified Phone Screen Image Dataset for Widget Classification on CNNs

  • Byun, SungChul;Han, Seong-Soo;Jeong, Chang-Sung
    • Journal of Information Processing Systems
    • /
    • 제18권2호
    • /
    • pp.197-207
    • /
    • 2022
  • The applications and user interfaces (UIs) of smart mobile devices are constantly diversifying. For example, deep learning can be an innovative solution to classify widgets in screen images for increasing convenience. To this end, the present research leverages captured images and the ReDraw dataset to write deep learning datasets for image classification purposes. First, as the validation for datasets using ResNet50 and EfficientNet, the experiments show that the dataset composed in this study is helpful for classification according to a widget's functionality. An implementation for widget detection and classification on RetinaNet and EfficientNet is then executed. Finally, the research suggests the Widg-C and Widg-D datasets-a deep learning dataset for identifying the widgets of smart devices-and implementing them for use with representative convolutional neural network models.

합성 데이터를 이용한 SAR 지상표적의 딥러닝 탐지/분류 성능분석 (Performance Analysis of Deep Learning-Based Detection/Classification for SAR Ground Targets with the Synthetic Dataset)

  • 박지훈
    • 한국군사과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.147-155
    • /
    • 2024
  • Based on the recently developed deep learning technology, many studies have been conducted on deep learning networks that simultaneously detect and classify targets of interest in synthetic aperture radar(SAR) images. Although numerous research results have been derived mainly with the open SAR ship datasets, there is a lack of work carried out on the deep learning network aimed at detecting and classifying SAR ground targets and trained with the synthetic dataset generated from electromagnetic scattering simulations. In this respect, this paper presents the deep learning network trained with the synthetic dataset and applies it to detecting and classifying real SAR ground targets. With experiment results, this paper also analyzes the network performance according to the composition ratio between the real measured data and the synthetic data involved in network training. Finally, the summary and limitations are discussed to give information on the future research direction.

강건한 CNN기반 수중 물체 인식을 위한 이미지 합성과 자동화된 Annotation Tool (Synthesizing Image and Automated Annotation Tool for CNN based Under Water Object Detection)

  • 전명환;이영준;신영식;장혜수;여태경;김아영
    • 로봇학회논문지
    • /
    • 제14권2호
    • /
    • pp.139-149
    • /
    • 2019
  • In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.

Multi-type Image Noise Classification by Using Deep Learning

  • Waqar Ahmed;Zahid Hussain Khand;Sajid Khan;Ghulam Mujtaba;Muhammad Asif Khan;Ahmad Waqas
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.143-147
    • /
    • 2024
  • Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • 한국인공지능학회지
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.

딥러닝을 이용한 창상 분할 알고리즘 (Development of wound segmentation deep learning algorithm)

  • 강현영;허연우;전재준;정승원;김지예;박성빈
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권2호
    • /
    • pp.90-94
    • /
    • 2024
  • Diagnosing wounds presents a significant challenge in clinical settings due to its complexity and the subjective assessments by clinicians. Wound deep learning algorithms quantitatively assess wounds, overcoming these challenges. However, a limitation in existing research is reliance on specific datasets. To address this limitation, we created a comprehensive dataset by combining open dataset with self-produced dataset to enhance clinical applicability. In the annotation process, machine learning based on Gradient Vector Flow (GVF) was utilized to improve objectivity and efficiency over time. Furthermore, the deep learning model was equipped U-net with residual blocks. Significant improvements were observed using the input dataset with images cropped to contain only the wound region of interest (ROI), as opposed to original sized dataset. As a result, the Dice score remarkably increased from 0.80 using the original dataset to 0.89 using the wound ROI crop dataset. This study highlights the need for diverse research using comprehensive datasets. In future study, we aim to further enhance and diversify our dataset to encompass different environments and ethnicities.

딥러닝 기반의 새로운 마스크 얼굴 데이터 세트를 사용한 최신 얼굴 인식 (Modern Face Recognition using New Masked Face Dataset Generated by Deep Learning)

  • 판반뎃;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.647-650
    • /
    • 2021
  • The most powerful and modern face recognition techniques are using deep learning methods that have provided impressive performance. The outbreak of COVID-19 pneumonia has spread worldwide, and people have begun to wear a face mask to prevent the spread of the virus, which has led existing face recognition methods to fail to identify people. Mainly, it pushes masked face recognition has become one of the most challenging problems in the face recognition domain. However, deep learning methods require numerous data samples, and it is challenging to find benchmarks of masked face datasets available to the public. In this work, we develop a new simulated masked face dataset that we can use for masked face recognition tasks. To evaluate the usability of the proposed dataset, we also retrained the dataset with ArcFace based system, which is one the most popular state-of-the-art face recognition methods.