We present solar event auto detection using deep-learning-based object detection algorithms and DeepSDO event dataset. DeepSDO event dataset is a new detection dataset with bounding boxed as ground-truth for three solar event (coronal holes, sunspots and prominences) features using Solar Dynamics Observatory data. To access the reliability of DeepSDO event dataset, we compared to HEK data. We train two representative object detection models, the Single Shot MultiBox Detector (SSD) and the Faster Region-based Convolutional Neural Network (R-CNN) with DeepSDO event dataset. We compared the performance of the two models for three solar events and this study demonstrates that deep learning-based object detection can successfully detect multiple types of solar events. In addition, we provide DeepSDO event dataset for further achievements event detection in solar physics.
Due to COVID-19, Correct method of wearing mask is important to prevent COVID-19 and the other respiratory tract infections. And the deep learning technology in the image processing has been developed. The purpose of this study is to create the type of mask wearing dataset for deep learning models and select the deep learning model to detect the wearing mask correctly. The Image dataset is the 2,296 images acquired using a web crawler. Deep learning classification models provided by tensorflow are used to validate the dataset. And Object detection deep learning model YOLOs are used to select the detection deep learning model to detect the wearing mask correctly. In this process, this paper proposes to validate the type of mask wearing datasets and YOLOv5 is the effective model to detect the type of mask wearing. The experimental results show that reliable dataset is acquired and the YOLOv5 model effectively recognize type of mask wearing.
KIPS Transactions on Software and Data Engineering
/
v.10
no.2
/
pp.73-78
/
2021
Recently, as interest in deep learning has increased, many researches in various fields using deep learning techniques have been conducted. Studies on automatic generation of fonts using deep learning-based generation models are limited to several languages such as Roman or Chinese characters. Generating Korean font is a very time-consuming and expensive task, and can be easily created using deep learning. For research on generating Korean fonts, it is important to prepare a Korean font dataset from the viewpoint of process automation in order to keep pace with deep learning-based generation models. In this paper, we propose a Korean font dataset for deep learning-based Korean font research and describe a method of constructing the dataset. Based on the Korean font data set proposed in this paper, we show the usefulness of the proposed dataset configuration through the process of applying it to a deep learning Korean font generation application.
The applications and user interfaces (UIs) of smart mobile devices are constantly diversifying. For example, deep learning can be an innovative solution to classify widgets in screen images for increasing convenience. To this end, the present research leverages captured images and the ReDraw dataset to write deep learning datasets for image classification purposes. First, as the validation for datasets using ResNet50 and EfficientNet, the experiments show that the dataset composed in this study is helpful for classification according to a widget's functionality. An implementation for widget detection and classification on RetinaNet and EfficientNet is then executed. Finally, the research suggests the Widg-C and Widg-D datasets-a deep learning dataset for identifying the widgets of smart devices-and implementing them for use with representative convolutional neural network models.
Journal of the Korea Institute of Military Science and Technology
/
v.27
no.2
/
pp.147-155
/
2024
Based on the recently developed deep learning technology, many studies have been conducted on deep learning networks that simultaneously detect and classify targets of interest in synthetic aperture radar(SAR) images. Although numerous research results have been derived mainly with the open SAR ship datasets, there is a lack of work carried out on the deep learning network aimed at detecting and classifying SAR ground targets and trained with the synthetic dataset generated from electromagnetic scattering simulations. In this respect, this paper presents the deep learning network trained with the synthetic dataset and applies it to detecting and classifying real SAR ground targets. With experiment results, this paper also analyzes the network performance according to the composition ratio between the real measured data and the synthetic data involved in network training. Finally, the summary and limitations are discussed to give information on the future research direction.
In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.
International Journal of Computer Science & Network Security
/
v.24
no.7
/
pp.143-147
/
2024
Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.
With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.
Hyunyoung Kang;Yeon-Woo Heo;Jae Joon Jeon;Seung-Won Jung;Jiye Kim;Sung Bin Park
Journal of Biomedical Engineering Research
/
v.45
no.2
/
pp.90-94
/
2024
Diagnosing wounds presents a significant challenge in clinical settings due to its complexity and the subjective assessments by clinicians. Wound deep learning algorithms quantitatively assess wounds, overcoming these challenges. However, a limitation in existing research is reliance on specific datasets. To address this limitation, we created a comprehensive dataset by combining open dataset with self-produced dataset to enhance clinical applicability. In the annotation process, machine learning based on Gradient Vector Flow (GVF) was utilized to improve objectivity and efficiency over time. Furthermore, the deep learning model was equipped U-net with residual blocks. Significant improvements were observed using the input dataset with images cropped to contain only the wound region of interest (ROI), as opposed to original sized dataset. As a result, the Dice score remarkably increased from 0.80 using the original dataset to 0.89 using the wound ROI crop dataset. This study highlights the need for diverse research using comprehensive datasets. In future study, we aim to further enhance and diversify our dataset to encompass different environments and ethnicities.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.647-650
/
2021
The most powerful and modern face recognition techniques are using deep learning methods that have provided impressive performance. The outbreak of COVID-19 pneumonia has spread worldwide, and people have begun to wear a face mask to prevent the spread of the virus, which has led existing face recognition methods to fail to identify people. Mainly, it pushes masked face recognition has become one of the most challenging problems in the face recognition domain. However, deep learning methods require numerous data samples, and it is challenging to find benchmarks of masked face datasets available to the public. In this work, we develop a new simulated masked face dataset that we can use for masked face recognition tasks. To evaluate the usability of the proposed dataset, we also retrained the dataset with ArcFace based system, which is one the most popular state-of-the-art face recognition methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.