• 제목/요약/키워드: deep-learning algorithm

검색결과 1,190건 처리시간 0.032초

Self-Imitation Learning을 이용한 개선된 Deep Q-Network 알고리즘 (Improved Deep Q-Network Algorithm Using Self-Imitation Learning)

  • 선우영민;이원창
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.644-649
    • /
    • 2021
  • Self-Imitation Learning은 간단한 비활성 정책 actor-critic 알고리즘으로써 에이전트가 과거의 좋은 경험을 활용하여 최적의 정책을 찾을 수 있도록 해준다. 그리고 actor-critic 구조를 갖는 강화학습 알고리즘에 결합되어 다양한 환경들에서 알고리즘의 상당한 개선을 보여주었다. 하지만 Self-Imitation Learning이 강화학습에 큰 도움을 준다고 하더라도 그 적용 분야는 actor-critic architecture를 가지는 강화학습 알고리즘으로 제한되어 있다. 본 논문에서 Self-Imitation Learning의 알고리즘을 가치 기반 강화학습 알고리즘인 DQN에 적용하는 방법을 제안하고, Self-Imitation Learning이 적용된 DQN 알고리즘의 학습을 다양한 환경에서 진행한다. 아울러 그 결과를 기존의 결과와 비교함으로써 Self-Imitation Leaning이 DQN에도 적용될 수 있으며 DQN의 성능을 개선할 수 있음을 보인다.

A3C 기반의 강화학습을 사용한 DASH 시스템 (A DASH System Using the A3C-based Deep Reinforcement Learning)

  • 최민제;임경식
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.297-307
    • /
    • 2022
  • The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.

Proposal of a new method for learning of diesel generator sounds and detecting abnormal sounds using an unsupervised deep learning algorithm

  • Hweon-Ki Jo;Song-Hyun Kim;Chang-Lak Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.506-515
    • /
    • 2023
  • This study is to find a method to learn engine sound after the start-up of a diesel generator installed in nuclear power plant with an unsupervised deep learning algorithm (CNN autoencoder) and a new method to predict the failure of a diesel generator using it. In order to learn the sound of a diesel generator with a deep learning algorithm, sound data recorded before and after the start-up of two diesel generators was used. The sound data of 20 min and 2 h were cut into 7 s, and the split sound was converted into a spectrogram image. 1200 and 7200 spectrogram images were created from sound data of 20 min and 2 h, respectively. Using two different deep learning algorithms (CNN autoencoder and binary classification), it was investigated whether the diesel generator post-start sounds were learned as normal. It was possible to accurately determine the post-start sounds as normal and the pre-start sounds as abnormal. It was also confirmed that the deep learning algorithm could detect the virtual abnormal sounds created by mixing the unusual sounds with the post-start sounds. This study showed that the unsupervised anomaly detection algorithm has a good accuracy increased about 3% with comparing to the binary classification algorithm.

Detection of Moving Direction using PIR Sensors and Deep Learning Algorithm

  • Woo, Jiyoung;Yun, Jaeseok
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.11-17
    • /
    • 2019
  • In this paper, we propose a method to recognize the moving direction in the indoor environment by using the sensing system equipped with passive infrared (PIR) sensors and a deep learning algorithm. A PIR sensor generates a signal that can be distinguished according to the direction of movement of the user. A sensing system with four PIR sensors deployed by $45^{\circ}$ increments is developed and installed in the ceiling of the room. The PIR sensor signals from 6 users with 10-time experiments for 8 directions were collected. We extracted the raw data sets and performed experiments varying the number of sensors fed into the deep learning algorithm. The proposed sensing system using deep learning algorithm can recognize the users' moving direction by 99.2 %. In addition, with only one PIR senor, the recognition accuracy reaches 98.4%.

Deep Learning Based Real-Time Painting Surface Inspection Algorithm for Autonomous Inspection Drone

  • Chang, Hyung-young;Han, Seung-ryong;Lim, Heon-young
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.253-257
    • /
    • 2019
  • A deep learning based real-time painting surface inspection algorithm is proposed herein, designed for developing an autonomous inspection drone. The painting surface inspection is usually conducted manually. However, the manual inspection has a limitation in obtaining accurate data for correct judgement on the surface because of human error and deviation of individual inspection experiences. The best method to replace manual surface inspection is the vision-based inspection method with a camera, using various image processing algorithms. Nevertheless, the visual inspection is difficult to apply to surface inspection due to diverse appearances of material, hue, and lightning effects. To overcome technical limitations, a deep learning-based pattern recognition algorithm is proposed, which is specialized for painting surface inspections. The proposed algorithm functions in real time on the embedded board mounted on an autonomous inspection drone. The inspection results data are stored in the database and used for training the deep learning algorithm to improve performance. The various experiments for pre-inspection of painting processes are performed to verify real-time performance of the proposed deep learning algorithm.

얼굴 표정 인식을 위한 유전자 알고리즘 기반 심층학습 모델 최적화 (Optimization of Deep Learning Model Based on Genetic Algorithm for Facial Expression Recognition)

  • 박장식
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.85-92
    • /
    • 2020
  • 심층학습은 많은 양의 데이터셋을 학습에 활용하여 객체 분류, 검출, 분할 등의 영상 분석에 탁월한 성능을 나타내고 있다. 본 논문에서는 데이터셋의 종류가 다양한 얼굴 표정인식 데이터셋들을 활용하여 학습 데이터셋의 특성이 심층학습 성능에 영향을 줄 수 있음을 확인하고, 각 학습 데이터셋에 적합한 심층학습 모델의 구성 요소를 설정하는 방법을 제안한다. 제안하는 방법은 심층학습 모델의 성능에 영향을 주는 구성 요소인 활성함수, 그리고 최적화 알고리즘을 유전 알고리즘을 이용하여 선정한다. CK+, MMI, KDEF 데이터셋에 대해서 널리 활용되고 있는 심층학습 모델의 각 구성 요소별 다양한 알고리즘을 적용하여 성능을 비교 분석하고, 유전 알고리즘을 적용하여 최적의 구성 요소를 선정할 수 있음을 시뮬레이션을 통하여 확인한다.

Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs

  • Hyoung Suk Park;Kiwan Jeon;Yeon Jin Cho;Se Woo Kim;Seul Bi Lee;Gayoung Choi;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon;Woo Sun Kim;Young Jin Ryu;Jae-Yeon Hwang
    • Korean Journal of Radiology
    • /
    • 제22권4호
    • /
    • pp.612-623
    • /
    • 2021
  • Objective: To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs. Materials and Methods: Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience. Results: The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988-0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618-0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001). Conclusion: The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.

Automatically Diagnosing Skull Fractures Using an Object Detection Method and Deep Learning Algorithm in Plain Radiography Images

  • Tae Seok, Jeong;Gi Taek, Yee; Kwang Gi, Kim;Young Jae, Kim;Sang Gu, Lee;Woo Kyung, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권1호
    • /
    • pp.53-62
    • /
    • 2023
  • Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

Controller Learning Method of Self-driving Bicycle Using State-of-the-art Deep Reinforcement Learning Algorithms

  • Choi, Seung-Yoon;Le, Tuyen Pham;Chung, Tae-Choong
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권10호
    • /
    • pp.23-31
    • /
    • 2018
  • Recently, there have been many studies on machine learning. Among them, studies on reinforcement learning are actively worked. In this study, we propose a controller to control bicycle using DDPG (Deep Deterministic Policy Gradient) algorithm which is the latest deep reinforcement learning method. In this paper, we redefine the compensation function of bicycle dynamics and neural network to learn agents. When using the proposed method for data learning and control, it is possible to perform the function of not allowing the bicycle to fall over and reach the further given destination unlike the existing method. For the performance evaluation, we have experimented that the proposed algorithm works in various environments such as fixed speed, random, target point, and not determined. Finally, as a result, it is confirmed that the proposed algorithm shows better performance than the conventional neural network algorithms NAF and PPO.