• Title/Summary/Keyword: deep network

Search Result 2,983, Processing Time 0.031 seconds

AVK based Cryptosystem and Recent Directions Towards Cryptanalysis

  • Prajapat, Shaligram;Sharma, Ashok;Thakur, Ramjeevan Singh
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.97-110
    • /
    • 2016
  • Cryptanalysis is very important step for auditing and checking strength of any cryptosystem. Some of these cryptosystem ensures confidentiality and security of large information exchange from source to destination using symmetric key cryptography. The cryptanalyst investigates the strengths and identifies weakness key as well as enciphering algorithm. With increase in key size the time and effort required to guess the correct key increases so trend is increase key size from 8, 16, 24, 32, 56, 64, 128 and 256 bits to strengthen the cryptosystem and thus algorithm continues without compromise on the cost of time and computation. Automatic Variable Key (AVK) approach is an alternative to the approach of fixing up key size and adding security level with key variability adds new dimension in the development of secure cryptosystem. Likewise, whenever any new cryptographic method is invented to replace per-existing vulnerable cryptographic method, its deep analysis from all perspectives (Hacker / Cryptanalyst as well as User) is desirable and proper study and evaluation of its performance is must. This work investigates AVK based cryptic techniques, in future to exploit benefits of advances in computational methods like ANN, GA, SI etc. These techniques for cryptanalysis are changing drastically to reduce cryptographic complexity. In this paper a detailed survey and direction of development work has been conducted. The work compares these new methods with state of art approaches and presents future scope and direction from the cryptic mining perspectives.

Study on the Pulse Diagnosis for Pattern Identifications in Stroke Patients (중풍환자의 변증에 따른 맥상의 분포)

  • Lee, Jung-Sup;Kang, Byoung-Kab;Ko, Mi-Mi;Kim, Bo-Young;Kim, Jeong-Cheol;Lee, In;Kim, Yun-Sik;Cho, Ki-Ho;Choi, Sun-Mi;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1378-1382
    • /
    • 2008
  • This study is aim to evaluate pulse diagnosis as indicators for classification of the pattern identifications in stroke patients. To get the clinical information, we recruited the onset 1 month stroke patients through the multicenter network which consists of 13 oriental hospitals. The clinical informations about three pairs of pulse wave form and levels of their significancy based on the case report form (CRF) were collected and their distribution in each pattern identification were analyzed. The results are as follows Fire-Heat group shows high portions of floating pulse, rapid pulse and solid pulse. Qi Defficiency group has a greater portion of deep pulse, slow pulse, deficient pulse. The well-defined character of Phlegm-Retained Fluid, Yin Defficiency, Static Blood groups cannot be explained by pulse wave form. These results show a rough relationship between the pulse diagnosis and pattern identifications of stroke therefore, further studies are required to determine the pulse diagnosis as significant indicators of stroke pattern identification.

Object classification for domestic waste based on Convolutional neural networks (심층 신경망 기반의 생활폐기물 자동 분류)

  • Nam, Junyoung;Lee, Christine;Patankar, Asif Ashraf;Wang, Hanxiang;Li, Yanfen;Moon, Hyeonjoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.83-86
    • /
    • 2019
  • 도시화 과정에서 도시의 생활폐기물 문제가 빠르게 증가되고 있고, 효과적이지 못한 생활폐기물 관리는 도시의 오염을 악화시키고 물리적인 환경오염과 경제적인 부분에서 극심한 문제들을 야기시킬 수 있다. 게다가 부피가 커서 관리하기 힘든 대형 생활폐기물들이 증가하여 도시 발전에도 방해가 된다. 생활폐기물을 처리하는데 있어 대형 생활폐기물 품목에 대해서는 요금을 청구하여 처리한다. 다양한 유형의 대형 생활폐기물을 수동으로 분류하는 것은 시간과 비용이 많이 든다. 그 결과 대형 생활폐기물을 자동으로 분류하는 시스템을 도입하는 것이 중요하다. 본 논문에서는 대형 생활폐기물 분류를 위한 시스템을 제안하며, 이 논문의 4 가지로 분류된다. 1) 높은 정확도와 강 분류(roust classification) 수행에 적합한 Convolution Neural Network(CNN) 모델 중 VGG-19, Inception-V3, ResNet50 의 정확도와 속도를 비교한다. 제안된 20 개의 클래스의 대형 생활폐기물의 데이터 셋(data set)에 대해 가장 높은 분류의 정확도는 86.19%이다. 2) 불균형 데이터 문제를 처리하기 Class Weight VGG-19(CW-VGG-19)와 Extreme Gradient Boosting VGG-19 두 가지 방법을 사용하였다. 3) 20 개의 클래스를 포함하는 데이터 셋을 수동으로 수집 및 검증하였으며 각 클래스의 컬러 이미지 수는 500 개 이상이다. 4) 딥 러닝(Deep Learning) 기반 모바일 애플리케이션을 개발하였다.

  • PDF

A Study on the Strategies for Expanding Exports of Indonesia utilizing E-commerce Platform (전자상거래 플랫폼을 활용한 인도네시아 수출확대방안에 관한 연구)

  • Choi, Jang Woo;Park, Jae Han
    • International Commerce and Information Review
    • /
    • v.19 no.1
    • /
    • pp.99-126
    • /
    • 2017
  • The Indonesian e-commerce market has grown significantly due to sustained economic growth, middle class growth, rapid increase in Internet and SNS users, and increase in accessibility of mobile broadband services. In particular, consumers' online shopping through mobile and SNS has been increasing rapidly based on the expansion of the popularity of smart phone devices. This research suggested the strategies for expanding exports of Indonesia through e-commerce platform to the Korean firms, with deep analysis of the current status and features, problems, cases, and implications etc. of Indonesia's e-commerce market. As an export expansion strategy utilizing Indonesia's e-commerce platform, this study showed the Korean firms have to build a local online distribution network, establish a logistics & delivery and payment system, acquire Halal certification for Muslim market, carry out the in-depth market research, actively implement Hanryu marketing strategy, develop a creative product, set up market segmentation strategies, and develop SNS mobile marketing.

  • PDF

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

Age Estimation via Selecting Discriminated Features and Preserving Geometry

  • Tian, Qing;Sun, Heyang;Ma, Chuang;Cao, Meng;Chu, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1721-1737
    • /
    • 2020
  • Human apparent age estimation has become a popular research topic and attracted great attention in recent years due to its wide applications, such as personal security and law enforcement. To achieve the goal of age estimation, a large number of methods have been pro-posed, where the models derived through the cumulative attribute coding achieve promised performance by preserving the neighbor-similarity of ages. However, these methods afore-mentioned ignore the geometric structure of extracted facial features. Indeed, the geometric structure of data greatly affects the accuracy of prediction. To this end, we propose an age estimation algorithm through joint feature selection and manifold learning paradigms, so-called Feature-selected and Geometry-preserved Least Square Regression (FGLSR). Based on this, our proposed method, compared with the others, not only preserves the geometry structures within facial representations, but also selects the discriminative features. Moreover, a deep learning extension based FGLSR is proposed later, namely Feature selected and Geometry preserved Neural Network (FGNN). Finally, related experiments are conducted on Morph2 and FG-Net datasets for FGLSR and on Morph2 datasets for FGNN. Experimental results testify our method achieve the best performances.

Association Analysis of Convolution Layer, Kernel and Accuracy in CNN (CNN의 컨볼루션 레이어, 커널과 정확도의 연관관계 분석)

  • Kong, Jun-Bea;Jang, Min-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1153-1160
    • /
    • 2019
  • In this paper, we experimented to find out how the number of convolution layers, the size, and the number of kernels affect the CNN. In addition, the general CNN was also tested for analysis and compared with the CNN used in the experiment. The neural networks used for the analysis are based on CNN, and each experimental model is experimented with the number of layers, the size, and the number of kernels at a constant value. All experiments were conducted using two layers of fully connected layers as a fixed. All other variables were tested with the same value. As the result of the analysis, when the number of layers is small, the data variance value is small regardless of the size and number of kernels, showing a solid accuracy. As the number of layers increases, the accuracy increases, but from above a certain number, the accuracy decreases, and the variance value also increases, resulting in a large accuracy deviation. The number of kernels had a greater effect on learning speed than other variables.

Web Attack Classification Model Based on Payload Embedding Pre-Training (페이로드 임베딩 사전학습 기반의 웹 공격 분류 모델)

  • Kim, Yeonsu;Ko, Younghun;Euom, Ieckchae;Kim, Kyungbaek
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.669-677
    • /
    • 2020
  • As the number of Internet users exploded, attacks on the web increased. In addition, the attack patterns have been diversified to bypass existing defense techniques. Traditional web firewalls are difficult to detect attacks of unknown patterns.Therefore, the method of detecting abnormal behavior by artificial intelligence has been studied as an alternative. Specifically, attempts have been made to apply natural language processing techniques because the type of script or query being exploited consists of text. However, because there are many unknown words in scripts and queries, natural language processing requires a different approach. In this paper, we propose a new classification model which uses byte pair encoding (BPE) technology to learn the embedding vector, that is often used for web attack payloads, and uses an attention mechanism-based Bi-GRU neural network to extract a set of tokens that learn their order and importance. For major web attacks such as SQL injection, cross-site scripting, and command injection attacks, the accuracy of the proposed classification method is about 0.9990 and its accuracy outperforms the model suggested in the previous study.

Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis

  • Wang, Shuhong;Huang, Runqiu;Ni, Pengpeng;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.723-738
    • /
    • 2017
  • Rock is a heterogeneous material, which introduces complexity in the analysis of rock slopes, since both the existing discontinuities within the rock mass and the intact rock contribute to the degradation of strength. Rock failure is often catastrophic due to the brittle nature of the material, involving the sliding along structural planes and the fracturing of rock bridge. This paper proposes an advanced discretization method of rock mass based on block theory. An in-house software, GeoSMA-3D, has been developed to generate the discrete fracture network (DFN) model, considering both measured and artificial joints. Measured joints are obtained from the photogrammetry analysis on the excavation face. Statistical tools then facilitate to derive artificial joints within the rock mass. Key blocks are searched to provide guidance on potential reinforcement measures. The discretized blocky system is subsequently implemented into a discontinuous deformation analysis (DDA) code. Strength reduction technique is employed to analyze the stability of the slope, where the factor of safety can be obtained once excessive deformation of slope profile is observed. The combined analysis approach also provides the failure mode, which can be used to guide the choice of strengthening strategy if needed. Finally, an illustrated example is presented for the analysis of a rock slope of 20 m height inclined at $60^{\circ}$ using combined GeoSMA-3D and DDA calculation.

A Study on the Industrial Application of Image Recognition Technology (이미지 인식 기술의 산업 적용 동향 연구)

  • Song, Jaemin;Lee, Sae Bom;Park, Arum
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.86-96
    • /
    • 2020
  • Based on the use cases of image recognition technology, this study looked at how artificial intelligence plays a role in image recognition technology. Through image recognition technology, satellite images can be analyzed with artificial intelligence to reveal the calculation of oil storage tanks in certain countries. And image recognition technology makes it possible for searching images or products similar to images taken or downloaded by users, as well as arranging fruit yields, or detecting plant diseases. Based on deep learning and neural network algorithms, we can recognize people's age, gender, and mood, confirming that image recognition technology is being applied in various industries. In this study, we can look at the use cases of domestic and overseas image recognition technology, as well as see which methods are being applied to the industry. In addition, through this study, the direction of future research was presented, focusing on various successful cases in which image recognition technology was implemented and applied in various industries. At the conclusion, it can be considered that the direction in which domestic image recognition technology should move forward in the future.