• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.031 seconds

Experimental Analysis of Bankruptcy Prediction with SHAP framework on Polish Companies

  • Tuguldur Enkhtuya;Dae-Ki Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • With the fast development of artificial intelligence day by day, users are demanding explanations about the results of algorithms and want to know what parameters influence the results. In this paper, we propose a model for bankruptcy prediction with interpretability using the SHAP framework. SHAP (SHAPley Additive exPlanations) is framework that gives a visualized result that can be used for explanation and interpretation of machine learning models. As a result, we can describe which features are important for the result of our deep learning model. SHAP framework Force plot result gives us top features which are mainly reflecting overall model score. Even though Fully Connected Neural Networks are a "black box" model, Shapley values help us to alleviate the "black box" problem. FCNNs perform well with complex dataset with more than 60 financial ratios. Combined with SHAP framework, we create an effective model with understandable interpretation. Bankruptcy is a rare event, then we avoid imbalanced dataset problem with the help of SMOTE. SMOTE is one of the oversampling technique that resulting synthetic samples are generated for the minority class. It uses K-nearest neighbors algorithm for line connecting method in order to producing examples. We expect our model results assist financial analysts who are interested in forecasting bankruptcy prediction of companies in detail.

Explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping

  • Yu Wang;Qingxu Yao;Quanhu Zhang;He Zhang;Yunfeng Lu;Qimeng Fan;Nan Jiang;Wangtao Yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4684-4692
    • /
    • 2022
  • Radionuclide identification is an important part of the nuclear material identification system. The development of artificial intelligence and machine learning has made nuclide identification rapid and automatic. However, many methods directly use existing deep learning models to analyze the gamma-ray spectrum, which lacks interpretability for researchers. This study proposes an explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping. This method shows the area of interest of the neural network on the gamma-ray spectrum by generating a class activation map. We analyzed the class activation map of the gamma-ray spectrum of different types, different gross counts, and different signal-to-noise ratios. The results show that the convolutional neural network attempted to learn the relationship between the input gamma-ray spectrum and the nuclide type, and could identify the nuclide based on the photoelectric peak and Compton edge. Furthermore, the results explain why the neural network could identify gamma-ray spectra with low counts and low signal-to-noise ratios. Thus, the findings improve researchers' confidence in the ability of neural networks to identify nuclides and promote the application of artificial intelligence methods in the field of nuclide identification.

Generative Interactive Psychotherapy Expert (GIPE) Bot

  • Ayesheh Ahrari Khalaf;Aisha Hassan Abdalla Hashim;Akeem Olowolayemo;Rashidah Funke Olanrewaju
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2023
  • One of the objectives and aspirations of scientists and engineers ever since the development of computers has been to interact naturally with machines. Hence features of artificial intelligence (AI) like natural language processing and natural language generation were developed. The field of AI that is thought to be expanding the fastest is interactive conversational systems. Numerous businesses have created various Virtual Personal Assistants (VPAs) using these technologies, including Apple's Siri, Amazon's Alexa, and Google Assistant, among others. Even though many chatbots have been introduced through the years to diagnose or treat psychological disorders, we are yet to have a user-friendly chatbot available. A smart generative cognitive behavioral therapy with spoken dialogue systems support was then developed using a model Persona Perception (P2) bot with Generative Pre-trained Transformer-2 (GPT-2). The model was then implemented using modern technologies in VPAs like voice recognition, Natural Language Understanding (NLU), and text-to-speech. This system is a magnificent device to help with voice-based systems because it can have therapeutic discussions with the users utilizing text and vocal interactive user experience.

A Crack Detection of Wooden Cultural Assets using EfficientNet model (EfficientNet 모델을 사용한 목조 문화재의 크랙 감지)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.125-127
    • /
    • 2021
  • 본 논문에서는 목조 문화재의 변위 현상 중 하나인 크랙 현상을 감지할 수 있는 EfficientNet 기반 모델을 제안한다. 우선 사전 학습된 EfficientNet모델을 통해 학습 이미지로부터 심층 특징을 추출하고 크랙이 존재하는지 아닌지에 대해 분류하기 위한 완전 연결 신경망을 학습한다. 그런 다음 새로운 목조 문화재 이미지가 들어왔을 때 학습한 모델을 통해서 크랙이 존재하는지에 대해 최종적으로 판별하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 EfficientNet을 사용한 딥 러닝 기반 모델이 다른 사전 학습된 합성 곱 신경망 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재에서의 크랙 검출에 있어서 적합함을 보여준다.

  • PDF

A Study on the Prediction of Traffic Accidents Using Artificial Intelligence (인공지능을 활용한 교통사고 발생 예측에 대한 연구)

  • Kim, Ga-eul;Kim, Jeong-hyeon;Son, Hye-ji;Kim, Dohyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.389-391
    • /
    • 2021
  • Traffic regulations are expanding to prevent traffic accidents for people's safety, but traffic accidents are not decreasing. In this study, the probability of traffic accidents occurring at a specific time and place is estimated by analyzing various factors such as weather forecast data from the Meteorological Agency, day of the week, time of day, location data, and location information. This study combines objective data on the occurrence of numerous previous traffic accidents with various additional elements not considered in previous studies to derive a more improved traffic accident probability prediction model. The results of this study can be effectively used for various transportation-related services for the safety of people.

  • PDF

An Displacement Detection Model in Cultural Asset Images using Object-centric Augmentation (객체 중심 증강 기법을 사용한 목조 문화재 영상에서의 변위 감지 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.137-139
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위를 효율적으로 감지하기 위한 객체 중심 증강 기법을 사용한 모델을 제안한다. 우선 객체 중심 증강 기법을 적용하여 변위 객체들이 이미지 공간상의 어느 곳이든 위치할 수 있게끔 데이터를 구성한 이후 사전 학습된 합성 곱 신경망을 사용하여 입력 이미지에 대한 심층 특징 벡터를 추출한다. 그 이후 심층 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 객체 중심 증강 기법을 사용한 모델이 객체 중심 증강 기법을 사용하지 않은 모델보다 목조 문화재에서 변위 영역을 더 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

Empirical Investigations to Plant Leaf Disease Detection Based on Convolutional Neural Network

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.115-120
    • /
    • 2023
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.

A novel method for vehicle load detection in cable-stayed bridge using graph neural network

  • Van-Thanh Pham;Hye-Sook Son;Cheol-Ho Kim;Yun Jang;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.731-744
    • /
    • 2023
  • Vehicle load information is an important role in operating and ensuring the structural health of cable-stayed bridges. In this regard, an efficient and economic method is proposed for vehicle load detection based on the observed cable tension and vehicle position using a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), a robust program for modeling and considering both geometric and material nonlinearities of bridge structures subjected to vehicle load with low computational costs. With the superiority of GNN, the proposed model is demonstrated to precisely capture complex nonlinear correlations between the input features and vehicle load in the output. Four popular machine learning methods including artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machines (SVM) are refereed in a comparison. A case study of a cable-stayed bridge with the typical truck is considered to evaluate the model's performance. The results demonstrate that the GNN-based model provides high accuracy and efficiency in prediction with satisfactory correlation coefficients, efficient determination values, and very small errors; and is a novel approach for vehicle load detection with the input data of the existing monitoring system.

Applications of the Text Mining Approach to Online Financial Information

  • Hansol Lee;Juyoung Kang;Sangun Park
    • Asia pacific journal of information systems
    • /
    • v.32 no.4
    • /
    • pp.770-802
    • /
    • 2022
  • With the development of deep learning techniques, text mining is producing breakthrough performance improvements, promising future applications, and practical use cases across many fields. Likewise, even though several attempts have been made in the field of financial information, few cases apply the current technological trends. Recently, companies and government agencies have attempted to conduct research and apply text mining in the field of financial information. First, in this study, we investigate various works using text mining to show what studies have been conducted in the financial sector. Second, to broaden the view of financial application, we provide a description of several text mining techniques that can be used in the field of financial information and summarize various paradigms in which these technologies can be applied. Third, we also provide practical cases for applying the latest text mining techniques in the field of financial information to provide more tangible guidance for those who will use text mining techniques in finance. Lastly, we propose potential future research topics in the field of financial information and present the research methods and utilization plans. This study can motivate researchers studying financial issues to use text mining techniques to gain new insights and improve their work from the rich information hidden in text data.

Convolutional Neural Network Based Plant Leaf Disease Detection

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.107-112
    • /
    • 2024
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.