• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.031 seconds

Classification of Tabular Data using High-Dimensional Mapping and Deep Learning Network (고차원 매핑기법과 딥러닝 네트워크를 통한 정형데이터의 분류)

  • Kyeong-Taek Kim;Won-Du Chang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.119-124
    • /
    • 2023
  • Deep learning has recently demonstrated conspicuous efficacy across diverse domains than traditional machine learning techniques, as the most popular approach for pattern recognition. The classification problems for tabular data, however, are remain for the area of traditional machine learning. This paper introduces a novel network module designed to tabular data into high-dimensional tensors. The module is integrated into conventional deep learning networks and subsequently applied to the classification of structured data. The proposed method undergoes training and validation on four datasets, culminating in an average accuracy of 90.22%. Notably, this performance surpasses that of the contemporary deep learning model, TabNet, by 2.55%p. The proposed approach acquires significance by virtue of its capacity to harness diverse network architectures, renowned for their superior performance in the domain of computer vision, for the analysis of tabular data.

A Detecting Technique for the Climatic Factors that Aided the Spread of COVID-19 using Deep and Machine Learning Algorithms

  • Al-Sharari, Waad;Mahmood, Mahmood A.;Abd El-Aziz, A.A.;Azim, Nesrine A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.131-138
    • /
    • 2022
  • Novel Coronavirus (COVID-19) is viewed as one of the main general wellbeing theaters on the worldwide level all over the planet. Because of the abrupt idea of the flare-up and the irresistible force of the infection, it causes individuals tension, melancholy, and other pressure responses. The avoidance and control of the novel Covid pneumonia have moved into an imperative stage. It is fundamental to early foresee and figure of infection episode during this troublesome opportunity to control of its grimness and mortality. The entire world is investing unimaginable amounts of energy to fight against the spread of this lethal infection. In this paper, we utilized machine learning and deep learning techniques for analyzing what is going on utilizing countries shared information and for detecting the climate factors that effect on spreading Covid-19, such as humidity, sunny hours, temperature and wind speed for understanding its regular dramatic way of behaving alongside the forecast of future reachability of the COVID-2019 around the world. We utilized data collected and produced by Kaggle and the Johns Hopkins Center for Systems Science. The dataset has 25 attributes and 9566 objects. Our Experiment consists of two phases. In phase one, we preprocessed dataset for DL model and features were decreased to four features humidity, sunny hours, temperature and wind speed by utilized the Pearson Correlation Coefficient technique (correlation attributes feature selection). In phase two, we utilized the traditional famous six machine learning techniques for numerical datasets, and Dense Net deep learning model to predict and detect the climatic factor that aide to disease outbreak. We validated the model by using confusion matrix (CM) and measured the performance by four different metrics: accuracy, f-measure, recall, and precision.

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

A Study of Machine Learning based Face Recognition for User Authentication

  • Hong, Chung-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.96-99
    • /
    • 2020
  • According to brilliant development of smart devices, many related services are being devised. And, almost every service is designed to provide user-centric services based on personal information. In this situation, to prevent unintentional leakage of personal information is essential. Conventionally, ID and Password system is used for the user authentication. This is a convenient method, but it has a vulnerability that can cause problems due to information leakage. To overcome these problem, many methods related to face recognition is being researched. Through this paper, we investigated the trend of user authentication through biometrics and a representative model for face recognition techniques. One is DeepFace of FaceBook and another is FaceNet of Google. Each model is based on the concept of Deep Learning and Distance Metric Learning, respectively. And also, they are based on Convolutional Neural Network (CNN) model. In the future, further research is needed on the equipment configuration requirements for practical applications and ways to provide actual personalized services.

Artificial Neural Network: Understanding the Basic Concepts without Mathematics

  • Han, Su-Hyun;Kim, Ko Woon;Kim, SangYun;Youn, Young Chul
    • Dementia and Neurocognitive Disorders
    • /
    • v.17 no.3
    • /
    • pp.83-89
    • /
    • 2018
  • Machine learning is where a machine (i.e., computer) determines for itself how input data is processed and predicts outcomes when provided with new data. An artificial neural network is a machine learning algorithm based on the concept of a human neuron. The purpose of this review is to explain the fundamental concepts of artificial neural networks.

Scoping Review of Machine Learning and Deep Learning Algorithm Applications in Veterinary Clinics: Situation Analysis and Suggestions for Further Studies

  • Kyung-Duk Min
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.243-259
    • /
    • 2023
  • Machine learning and deep learning (ML/DL) algorithms have been successfully applied in medical practice. However, their application in veterinary medicine is relatively limited, possibly due to a lack in the quantity and quality of relevant research. Because the potential demands for ML/DL applications in veterinary clinics are significant, it is important to note the current gaps in the literature and explore the possible directions for advancement in this field. Thus, a scoping review was conducted as a situation analysis. We developed a search strategy following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed and Embase databases were used in the initial search. The identified items were screened based on predefined inclusion and exclusion criteria. Information regarding model development, quality of validation, and model performance was extracted from the included studies. The current review found 55 studies that passed the criteria. In terms of target animals, the number of studies on industrial animals was similar to that on companion animals. Quantitative scarcity of prediction studies (n = 11, including duplications) was revealed in both industrial and non-industrial animal studies compared to diagnostic studies (n = 45, including duplications). Qualitative limitations were also identified, especially regarding validation methodologies. Considering these gaps in the literature, future studies examining the prediction and validation processes, which employ a prospective and multi-center approach, are highly recommended. Veterinary practitioners should acknowledge the current limitations in this field and adopt a receptive and critical attitude towards these new technologies to avoid their abuse.

Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

  • Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.204-214
    • /
    • 2017
  • Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.

Korean Coreference Resolution with Guided Mention Pair Model Using Deep Learning

  • Park, Cheoneum;Choi, Kyoung-Ho;Lee, Changki;Lim, Soojong
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1207-1217
    • /
    • 2016
  • The general method of machine learning has encountered disadvantages in terms of the significant amount of time and effort required for feature extraction and engineering in natural language processing. However, in recent years, these disadvantages have been solved using deep learning. In this paper, we propose a mention pair (MP) model using deep learning, and a system that combines both rule-based and deep learning-based systems using a guided MP as a coreference resolution, which is an information extraction technique. Our experiment results confirm that the proposed deep-learning based coreference resolution system achieves a better level of performance than rule- and statistics-based systems applied separately

Applicability Evaluation of Automated Machine Learning and Deep Neural Networks for Arctic Sea Ice Surface Temperature Estimation (북극 해빙표면온도 산출을 위한 Automated Machine Learning과 Deep Neural Network의 적용성 평가)

  • Sungwoo Park;Noh-Hun Seong;Suyoung Sim;Daeseong Jung;Jongho Woo;Nayeon Kim;Honghee Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1491-1495
    • /
    • 2023
  • This study utilized automated machine learning (AutoML) to calculate Arctic ice surface temperature (IST). AutoML-derived IST exhibited a strong correlation coefficient (R) of 0.97 and a root mean squared error (RMSE) of 2.51K. Comparative analysis with deep neural network (DNN) models revealed that AutoML IST demonstrated good accuracy, particularly when compared to Moderate Resolution Imaging Spectroradiometer (MODIS) IST and ice mass balance (IMB) buoy IST. These findings underscore the effectiveness of AutoML in enhancing IST estimation accuracy under challenging polar conditions.

Machine Learning Based Architecture and Urban Data Analysis - Construction of Floating Population Model Using Deep Learning - (머신러닝을 통한 건축 도시 데이터 분석의 기초적 연구 - 딥러닝을 이용한 유동인구 모델 구축 -)

  • Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • In this paper, we construct a prototype model for city data prediction by using time series data of floating population, and use machine learning to analyze urban data of complex structure. A correlation prediction model was constructed using three of the 10 data (total flow population, male flow population, and Monday flow population), and the result was compared with the actual data. The results of the accuracy were evaluated. The results of this study show that the predicted model of the floating population predicts the correlation between the predicted floating population and the current state of commerce. It is expected that it will help efficient and objective design in the planning stages of architecture, landscape, and urban areas such as tree environment design and layout of trails. Also, it is expected that the dynamic population prediction using multivariate time series data and collected location data will be able to perform integrated simulation with time series data of various fields.