Acknowledgement
Supported by : National Research Foundation of Korea
References
- Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Develop 1959;3:210-229. https://doi.org/10.1147/rd.33.0210
- Koza JR, Bennett FH 3rd, Andre D, Keane MA. Automated design of both the topology and sizing of analog electrical circuits using genetic programming. In: Gero JS, Sudweeks F, editors. Artificial Intelligence in Design. Dordrecht: Kluwer Academic, 1996;151-170.
- Deo RC. Machine learning in medicine. Circulation 2015;132:1920-1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
- Rashid T. Make Your Own Neural Network. 1st ed. North Charleston, SC: CreateSpace Independent Publishing Platform, 2016.
- Haykin S, Haykin SS. Neural Networks and Learning Machines. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2009.
- Rashid T, Huang BQ, Kechadi MT. A new simple recurrent network with real-time recurrent learning process. Proceedings of the 14th Irish Conference on Artificial Intelligence & Cognitive Science, AICS 2003; 2003 September 17-19; Dublin, Ireland. [place unknown]: Artificial Intelligence and Cognitive Science, 2003;169-174.
- Zakaria M, AL-Shebany M, Sarhan S. Artificial neural network: a brief overview. Int J Eng Res Appl 2014;4:7-12.
- Bottou L. Chapter 2. On-line learning and stochastic approximations. In: Saad D, editor. On-Line Learning in Neural Networks. Cambridge: Cambridge University Press, 1999;9-42.
- Bottou L. Large-scale machine learning with stochastic gradient descent. In: Lechevallier Y, Saporta G, editors. Proceedings of COMPSTAT'2010: 19th International Conference on Computational Statistics; 2010 August 22-27; Paris, France. Heidelberg: Physica-Verlag HD, 2010;177-186.
- Bottou L. Stochastic gradient descent tricks. In: Montavon G, Orr GB, Muller KR, editors. Neural Networks: Tricks of the Trade. 2nd ed. Heidelberg: Springer-Verlag Berlin Heidelberg, 2012;421-436.
- Ebersole JS, Husain AM, Nordli DR. Current Practice of Clinical Electroencephalography. 4th ed. Philadelphia, PA: Wolters Kluwer, 2014.
- Shepherd GM, Koch C. Introduction to synaptic circuits. In: Shepherd GM, editor. The Synaptic Organization of the Brain. 3rd ed. New York, NY: Oxford University Press, 1990;3-31.
- Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R. The brain activity map project and the challenge of functional connectomics. Neuron 2012;74:970-974. https://doi.org/10.1016/j.neuron.2012.06.006
- Hobert O. Neurogenesis in the nematode Caenorhabditis elegans. WormBook 2010:1-24.
- McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. 1943. Bull Math Biol 1990;52:99-115. https://doi.org/10.1016/S0092-8240(05)80006-0
- Ranka S, Mohan CK, Mehrotra K, Menon A. Characterization of a class of sigmoid functions with applications to neural networks. Neural Netw 1996;9:819-835. https://doi.org/10.1016/0893-6080(95)00107-7
- Kozyrev SV. Classification by ensembles of neural networks. p-Adic Numbers Ultrametric Anal Appl 2012;4:27-33. https://doi.org/10.1134/S2070046612010049
Cited by
- DENTAL CARIES PROGNOSIS BY NEURAL NETWORK COMPUTER TECHNOLOGIES vol.2019, pp.6, 2018, https://doi.org/10.21303/2504-5679.2019.001070
- Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data vol.19, pp.1, 2018, https://doi.org/10.1186/s12911-019-0974-x
- Fundamentals in Artificial Intelligence for Vascular Surgeons vol.65, pp.None, 2018, https://doi.org/10.1016/j.avsg.2019.11.037
- Applications of Artificial Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development vol.10, pp.11, 2020, https://doi.org/10.3390/app10113835
- Artificial neural networks applied to quality-by-design: From formulation development to clinical outcome vol.152, pp.None, 2020, https://doi.org/10.1016/j.ejpb.2020.05.012
- APPLICATION OF NEURAL NETWORK TECHNOLOGIES IN THE DENTAL CARIES FORECAST vol.73, pp.7, 2018, https://doi.org/10.36740/wlek202007135
- Artificial Neural Network Analyzing Wearable Device Gait Data for Identifying Patients With Stroke Unable to Return to Work vol.12, pp.None, 2018, https://doi.org/10.3389/fneur.2021.650542
- Artificial neural network models for reservoir-aquifer dimensionless variables: influx and pressure prediction for water influx calculation vol.11, pp.4, 2018, https://doi.org/10.1007/s13202-021-01148-8
- ARTIFICIAL NEURAL NETWORK APPLIED IN FORECASTING THE COMPOSITION OF MUNICIPAL SOLID WASTE IN IASI, ROMANIA vol.29, pp.3, 2018, https://doi.org/10.3846/jeelm.2021.15553
- An artificial neural network model for forecasting air pollution vol.1176, pp.1, 2018, https://doi.org/10.1088/1757-899x/1176/1/012032