• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.023 seconds

A Study on the Characteristics of AI Fashion based on Emotions -Focus on the User Experience- (감성을 기반으로 하는 AI 패션 특성 연구 -사용자 중심(UX) 관점으로-)

  • Kim, Minsun;Kim, Jinyoung
    • Journal of Fashion Business
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Digital transformation has induced changes in human life patterns; consumption patterns are also changing to digitalization. Entering the era of industry 4.0 with the 4th industrial revolution, it is important to pay attention to a new paradigm in the fashion industry, the shift from developer-centered to user-centered in the era of the 3rd industrial revolution. The meaning of storing users' changing life and consumption patterns and analyzing stored big data are linked to consumer sentiment. It is more valuable to read emotions, then develop and distribute products based on them, rather than developer-centered processes that previously started in the fashion market. An AI(Artificial Intelligence) deep learning algorithm that analyzes user emotion big data from user experience(UX) to emotion and uses the analyzed data as a source has become possible. By combining AI technology, the fashion industry can develop various new products and technologies that meet the functional and emotional aspects required by consumers and expect a sustainable user experience structure. This study analyzes clear and useful user experience in the fashion industry to derive the characteristics of AI algorithms that combine emotions and technologies reflecting users' needs and proposes methods that can be used in the fashion industry. The purpose of the study is to utilize information analysis using big data and AI algorithms so that structures that can interact with users and developers can lead to a sustainable ecosystem. Ultimately, it is meaningful to identify the direction of the optimized fashion industry through user experienced emotional fashion technology algorithms.

Prediction Model of Real Estate Transaction Price with the LSTM Model based on AI and Bigdata

  • Lee, Jeong-hyun;Kim, Hoo-bin;Shim, Gyo-eon
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.274-283
    • /
    • 2022
  • Korea is facing a number difficulties arising from rising housing prices. As 'housing' takes the lion's share in personal assets, many difficulties are expected to arise from fluctuating housing prices. The purpose of this study is creating housing price prediction model to prevent such risks and induce reasonable real estate purchases. This study made many attempts for understanding real estate instability and creating appropriate housing price prediction model. This study predicted and validated housing prices by using the LSTM technique - a type of Artificial Intelligence deep learning technology. LSTM is a network in which cell state and hidden state are recursively calculated in a structure which added cell state, which is conveyor belt role, to the existing RNN's hidden state. The real sale prices of apartments in autonomous districts ranging from January 2006 to December 2019 were collected through the Ministry of Land, Infrastructure, and Transport's real sale price open system and basic apartment and commercial district information were collected through the Public Data Portal and the Seoul Metropolitan City Data. The collected real sale price data were scaled based on monthly average sale price and a total of 168 data were organized by preprocessing respective data based on address. In order to predict prices, the LSTM implementation process was conducted by setting training period as 29 months (April 2015 to August 2017), validation period as 13 months (September 2017 to September 2018), and test period as 13 months (December 2018 to December 2019) according to time series data set. As a result of this study for predicting 'prices', there have been the following results. Firstly, this study obtained 76 percent of prediction similarity. We tried to design a prediction model of real estate transaction price with the LSTM Model based on AI and Bigdata. The final prediction model was created by collecting time series data, which identified the fact that 76 percent model can be made. This validated that predicting rate of return through the LSTM method can gain reliability.

Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika (정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로)

  • Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 2021
  • Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.

A Taekwondo Poomsae Movement Classification Model Learned Under Various Conditions

  • Ju-Yeon Kim;Kyu-Cheol Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.9-16
    • /
    • 2023
  • Technological advancement is being advanced in sports such as electronic protection of taekwondo competition and VAR of soccer. However, a person judges and guides the posture by looking at the posture, so sometimes a judgment dispute occurs at the site of the competition in Taekwondo Poomsae. This study proposes an artificial intelligence model that can more accurately judge and evaluate Taekwondo movements using artificial intelligence. In this study, after pre-processing the photographed and collected data, it is separated into train, test, and validation sets. The separated data is trained by applying each model and conditions, and then compared to present the best-performing model. The models under each condition compared the values of loss, accuracy, learning time, and top-n error, and as a result, the performance of the model trained under the conditions using ResNet50 and Adam was found to be the best. It is expected that the model presented in this study can be utilized in various fields such as education sites and competitions.

Comparison of Deep Learning Models Using Protein Sequence Data (단백질 기능 예측 모델의 주요 딥러닝 모델 비교 실험)

  • Lee, Jeung Min;Lee, Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.245-254
    • /
    • 2022
  • Proteins are the basic unit of all life activities, and understanding them is essential for studying life phenomena. Since the emergence of the machine learning methodology using artificial neural networks, many researchers have tried to predict the function of proteins using only protein sequences. Many combinations of deep learning models have been reported to academia, but the methods are different and there is no formal methodology, and they are tailored to different data, so there has never been a direct comparative analysis of which algorithms are more suitable for handling protein data. In this paper, the single model performance of each algorithm was compared and evaluated based on accuracy and speed by applying the same data to CNN, LSTM, and GRU models, which are the most frequently used representative algorithms in the convergence research field of predicting protein functions, and the final evaluation scale is presented as Micro Precision, Recall, and F1-score. The combined models CNN-LSTM and CNN-GRU models also were evaluated in the same way. Through this study, it was confirmed that the performance of LSTM as a single model is good in simple classification problems, overlapping CNN was suitable as a single model in complex classification problems, and the CNN-LSTM was relatively better as a combination model.

Development of the Artificial Intelligence Literacy Education Program for Preservice Secondary Teachers (예비 중등교사를 위한 인공지능 리터러시 교육 프로그램 개발)

  • Bong Seok Jang
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.65-70
    • /
    • 2024
  • As the interest in AI education grows, researchers have made efforts to implement AI education programs. However, research targeting pre-service teachers has been limited thus far. Therefore, this study was conducted to develop an AI literacy education program for preservice secondary teachers. The research results revealed that the weekly topics included the definition and applications of AI, analysis of intelligent agents, the importance of data, understanding machine learning, hands-on exercises on prediction and classification, hands-on exercises on clustering and classification, hands-on exercises on unstructured data, understanding deep learning, application of deep learning algorithms, fairness, transparency, accountability, safety, and social integration. Through this research, it is hoped that AI literacy education programs for preservice teachers will be expanded. In the future, it is anticipated that follow-up studies will be conducted to implement relevant education in teacher training institutions and analyze its effectiveness.

Current Applications and Future Perspectives of Brain Tumor Imaging (뇌종양 영상의 현재와 미래)

  • Ji Eun Park;Ho Sung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.3
    • /
    • pp.467-487
    • /
    • 2020
  • Anatomical imaging is the basis of the diagnosis and treatment response assessment of brain tumors. Among the existing imaging techniques currently available in clinical practice, diffusion-weighted imaging and perfusion imaging provide additional information. Recently, with the increasing importance of evaluation of the genomic variation and heterogeneity of tumors, clinical application of imaging techniques using radiomics and deep learning is expected. In this review, we will describe recommendations for magnetic resonance imaging protocols focusing on anatomical images that are still important in the clinical application of brain tumor imaging, and the basic principles of diffusion-weighted imaging and perfusion imaging among the advanced imaging techniques, as well as their pathophysiological background and clinical application. Finally, we will review the future perspectives of radiomics and deep learning applications in brain tumor imaging, which have been studied to a great extent due to the development of computer technology.

A Study on Bigdata Utilization in Cultural and Artistic Contents Production and Distribution (문화예술 콘텐츠 제작 및 유통에서의 빅데이터 활용 연구)

  • Kim, Hyun-Young;Kim, Jae-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.7
    • /
    • pp.384-392
    • /
    • 2019
  • Big data-related research that deals with the amount of explosive information in the era of the Fourth Industrial Revolution is actively underway. Big data is an essential element that promotes the development of artificial intelligence with a wide range of data that become learning data for machine learning, or deep learning. The use of deep learning and big data in various fields has produced meaningful results. In this paper, we have investigated the use of Big Data in the cultural arts industry, focusing on video contents. Noteworthy is that big data is used not only in the distribution of cultural and artistic contents but also in the production stage. In particular, we first looked at what kind of achievements and changes the Netflix in the US brought to the OTT business, and analyzed the current state of the OTT business in Korea. After that, Netflix analyzed the success stories of 'House of Cards', which was produced / circulated through 'Deep Learning' cinematique, which is a prediction algorithm, through accumulated customer data. After that, FGI (Focus Group Interview) was held for cultural and artistic contents experts. In this way, the future prospects of Big Data in the domestic culture and arts industry are divided into technical aspect, creative aspect, and ethical aspect.

Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information (기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Recently, since responding to meteorological changes depending on increasing greenhouse gas and electricity demand, the importance prediction of photovoltaic power (PV) is rapidly increasing. In particular, the prediction of PV power generation may help to determine a reasonable price of electricity, and solve the problem addressed such as a system stability and electricity production balance. However, since the dynamic changes of meteorological values such as solar radiation, cloudiness, and temperature, and seasonal changes, the accurate long-term PV power prediction is significantly challenging. Therefore, in this paper, we propose PV power prediction model based on deep learning that can be improved the PV power prediction performance by learning to use meteorological and seasonal information. We evaluate the performances using the proposed model compared to seasonal ARIMA (S-ARIMA) model, which is one of the typical time series methods, and ANN model, which is one hidden layer. As the experiment results using real-world dataset, the proposed model shows the best performance. It means that the proposed model shows positive impact on improving the PV power forecast performance.

Estimation of Duck House Litter Evaporation Rate Using Machine Learning (기계학습을 활용한 오리사 바닥재 수분 발생량 분석)

  • Kim, Dain;Lee, In-bok;Yeo, Uk-hyeon;Lee, Sang-yeon;Park, Sejun;Decano, Cristina;Kim, Jun-gyu;Choi, Young-bae;Cho, Jeong-hwa;Jeong, Hyo-hyeog;Kang, Solmoe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.77-88
    • /
    • 2021
  • Duck industry had a rapid growth in recent years. Nevertheless, researches to improve duck house environment are still not sufficient enough. Moisture generation of duck house litter is an important factor because it may cause severe illness and low productivity. However, the measuring process is difficult because it could be disturbed with animal excrements and other factors. Therefore, it has to be calculated according to the environmental data around the duck house litter. To cut through all these procedures, we built several machine learning regression model forecasting moisture generation of litter by measured environment data (air temperature, relative humidity, wind velocity and water contents). 5 models (Multi Linear Regression, k-Nearest Neighbors, Support Vector Regression, Random Forest and Deep Neural Network). have been selected for regression. By using R-Square, RMSE and MAE as evaluation metrics, the best accurate model was estimated according to the variables for each machine learning model. In addition, to address the small amount of data acquired through lab experiments, bootstrapping method, a technique utilized in statistics, was used. As a result, the most accurate model selected was Random Forest, with parameters of n-estimator 200 by bootstrapping the original data nine times.