• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.032 seconds

Textile material classification in clothing images using deep learning (딥러닝을 이용한 의류 이미지의 텍스타일 소재 분류)

  • So Young Lee;Hye Seon Jeong;Yoon Sung Choi;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.43-51
    • /
    • 2023
  • As online transactions increase, the image of clothing has a great influence on consumer purchasing decisions. The importance of image information for clothing materials has been emphasized, and it is important for the fashion industry to analyze clothing images and grasp the materials used. Textile materials used for clothing are difficult to identify with the naked eye, and much time and cost are consumed in sorting. This study aims to classify the materials of textiles from clothing images based on deep learning algorithms. Classifying materials can help reduce clothing production costs, increase the efficiency of the manufacturing process, and contribute to the service of recommending products of specific materials to consumers. We used machine vision-based deep learning algorithms ResNet and Vision Transformer to classify clothing images. A total of 760,949 images were collected and preprocessed to detect abnormal images. Finally, a total of 167,299 clothing images, 19 textile labels and 20 fabric labels were used. We used ResNet and Vision Transformer to classify clothing materials and compared the performance of the algorithms with the Top-k Accuracy Score metric. As a result of comparing the performance, the Vision Transformer algorithm outperforms ResNet.

Deep Neural Network Based Prediction of Daily Spectators for Korean Baseball League : Focused on Gwangju-KIA Champions Field (Deep Neural Network 기반 프로야구 일일 관중 수 예측 : 광주-기아 챔피언스 필드를 중심으로)

  • Park, Dong Ju;Kim, Byeong Woo;Jeong, Young-Seon;Ahn, Chang Wook
    • Smart Media Journal
    • /
    • v.7 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • In this paper, we used the Deep Neural Network (DNN) to predict the number of daily spectators of Gwangju - KIA Champions Field in order to provide marketing data for the team and related businesses and for managing the inventories of the facilities in the stadium. In this study, the DNN model, which is based on an artificial neural network (ANN), was used, and four kinds of DNN model were designed along with dropout and batch normalization model to prevent overfitting. Each of four models consists of 10 DNNs, and we added extra models with ensemble model. Each model was evaluated by Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The learning data from the model randomly selected 80% of the collected data from 2008 to 2017, and the other 20% were used as test data. With the result of 100 data selection, model configuration, and learning and prediction, we concluded that the predictive power of the DNN model with ensemble model is the best, and RMSE and MAPE are 15.17% and 14.34% higher, correspondingly, than the prediction value of the multiple linear regression model.

BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map (Short-time Fourier transform 소음맵을 이용한 컨볼루션 기반 BSR (Buzz, Squeak, Rattle) 소음 분류)

  • Bu, Seok-Jun;Moon, Se-Min;Cho, Sung-Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • There are three types of noise generated inside the vehicle: BSR (Buzz, Squeak, Rattle). In this paper, we propose a classifier that automatically classifies automotive BSR noise by using features extracted from deep convolutional neural networks. In the preprocessing process, the features of above three noises are represented as noise-map using STFT (Short-time Fourier Transform) algorithm. In order to cope with the problem that the position of the actual noise is unknown in the part of the generated noise map, the noise map is divided using the sliding window method. In this paper, internal parameter of the deep convolutional neural networks is visualized using the t-SNE (t-Stochastic Neighbor Embedding) algorithm, and the misclassified data is analyzed in a qualitative way. In order to analyze the classified data, the similarity of the noise type was quantified by SSIM (Structural Similarity Index) value, and it was found that the retractor tremble sound is most similar to the normal travel sound. The classifier of the proposed method compared with other classifiers of machine learning method recorded the highest classification accuracy (99.15 %).

Large orchard apple classification system (대형 과수원 사과 분류 시스템)

  • Kim, Weol-Youg;Shin, Seung Seung-Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.393-399
    • /
    • 2018
  • The development of unmanned AI continues, and the development of AI unmanned is aimed at more efficiently, accurately, and speedily the work that has been resolved by manpower such as industry, welfare, and manpower. AI unmanned technology is evolving in various places, and it is time to switch to unmanned systems from many industries and factories. We take this into consideration, and use the Deep Learning technology, which is one of the core technologies of artificial intelligence (AI), not the manpower but the fruits that pour the rails at once in a large orchard. We want to study the unmanned fruit sorting machine that can be operated under manager's supervision without dividing the fruit by type and grade and dividing by country of origin and grade. This unmanned automated classification system aims to reduce the labor cost by minimizing the manpower and to improve the

Performance Comparisons of GAN-Based Generative Models for New Product Development (신제품 개발을 위한 GAN 기반 생성모델 성능 비교)

  • Lee, Dong-Hun;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.867-871
    • /
    • 2022
  • Amid the recent rapid trend change, the change in design has a great impact on the sales of fashion companies, so it is inevitable to be careful in choosing new designs. With the recent development of the artificial intelligence field, various machine learning is being used a lot in the fashion market to increase consumers' preferences. To contribute to increasing reliability in the development of new products by quantifying abstract concepts such as preferences, we generate new images that do not exist through three adversarial generative neural networks (GANs) and numerically compare abstract concepts of preferences using pre-trained convolution neural networks (CNNs). Deep convolutional generative adversarial networks (DCGAN), Progressive growing adversarial networks (PGGAN), and Dual Discriminator generative adversarial networks (DANs), which were trained to produce comparative, high-level, and high-level images. The degree of similarity measured was considered as a preference, and the experimental results showed that D2GAN showed a relatively high similarity compared to DCGAN and PGGAN.

Comparison of Anomaly Detection Performance Based on GRU Model Applying Various Data Preprocessing Techniques and Data Oversampling (다양한 데이터 전처리 기법과 데이터 오버샘플링을 적용한 GRU 모델 기반 이상 탐지 성능 비교)

  • Yoo, Seung-Tae;Kim, Kangseok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • According to the recent change in the cybersecurity paradigm, research on anomaly detection methods using machine learning and deep learning techniques, which are AI implementation technologies, is increasing. In this study, a comparative study on data preprocessing techniques that can improve the anomaly detection performance of a GRU (Gated Recurrent Unit) neural network-based intrusion detection model using NGIDS-DS (Next Generation IDS Dataset), an open dataset, was conducted. In addition, in order to solve the class imbalance problem according to the ratio of normal data and attack data, the detection performance according to the oversampling ratio was compared and analyzed using the oversampling technique applied with DCGAN (Deep Convolutional Generative Adversarial Networks). As a result of the experiment, the method preprocessed using the Doc2Vec algorithm for system call feature and process execution path feature showed good performance, and in the case of oversampling performance, when DCGAN was used, improved detection performance was shown.

Malware Detection Using Deep Recurrent Neural Networks with no Random Initialization

  • Amir Namavar Jahromi;Sattar Hashemi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.177-189
    • /
    • 2023
  • Malware detection is an increasingly important operational focus in cyber security, particularly given the fast pace of such threats (e.g., new malware variants introduced every day). There has been great interest in exploring the use of machine learning techniques in automating and enhancing the effectiveness of malware detection and analysis. In this paper, we present a deep recurrent neural network solution as a stacked Long Short-Term Memory (LSTM) with a pre-training as a regularization method to avoid random network initialization. In our proposal, we use global and short dependencies of the inputs. With pre-training, we avoid random initialization and are able to improve the accuracy and robustness of malware threat hunting. The proposed method speeds up the convergence (in comparison to stacked LSTM) by reducing the length of malware OpCode or bytecode sequences. Hence, the complexity of our final method is reduced. This leads to better accuracy, higher Mattews Correlation Coefficients (MCC), and Area Under the Curve (AUC) in comparison to a standard LSTM with similar detection time. Our proposed method can be applied in real-time malware threat hunting, particularly for safety critical systems such as eHealth or Internet of Military of Things where poor convergence of the model could lead to catastrophic consequences. We evaluate the effectiveness of our proposed method on Windows, Ransomware, Internet of Things (IoT), and Android malware datasets using both static and dynamic analysis. For the IoT malware detection, we also present a comparative summary of the performance on an IoT-specific dataset of our proposed method and the standard stacked LSTM method. More specifically, of our proposed method achieves an accuracy of 99.1% in detecting IoT malware samples, with AUC of 0.985, and MCC of 0.95; thus, outperforming standard LSTM based methods in these key metrics.

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

Deep Learning-based Korean Dialect Machine Translation Research Considering Linguistics Features and Service (언어적 특성과 서비스를 고려한 딥러닝 기반 한국어 방언 기계번역 연구)

  • Lim, Sangbeom;Park, Chanjun;Yang, Yeongwook
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2022
  • Based on the importance of dialect research, preservation, and communication, this paper conducted a study on machine translation of Korean dialects for dialect users who may be marginalized. For the dialect data used, AIHUB dialect data distributed based on the highest administrative district was used. We propose a many-to-one dialect machine translation that promotes the efficiency of model distribution and modeling research to improve the performance of the dialect machine translation by applying Copy mechanism. This paper evaluates the performance of the one-to-one model and the many-to-one model as a BLEU score, and analyzes the performance of the many-to-one model in the Korean dialect from a linguistic perspective. The performance improvement of the one-to-one machine translation by applying the methodology proposed in this paper and the significant high performance of the many-to-one machine translation were derived.

Rare Malware Classification Using Memory Augmented Neural Networks (메모리 추가 신경망을 이용한 희소 악성코드 분류)

  • Kang, Min Chul;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.847-857
    • /
    • 2018
  • As the number of malicious code increases steeply, cyber attack victims targeting corporations, public institutions, financial institutions, hospitals are also increasing. Accordingly, academia and security industry are conducting various researches on malicious code detection. In recent years, there have been a lot of researches using machine learning techniques including deep learning. In the case of research using Convolutional Neural Network, ResNet, etc. for classification of malicious code, it can be confirmed that the performance improvement is higher than the existing classification method. However, one of the characteristics of the target attack is that it is custom malicious code that makes it operate only for a specific company, so it is not a form spreading widely to a large number of users. Since there are not many malicious codes of this kind, it is difficult to apply the previously studied machine learning or deep learning techniques. In this paper, we propose a method to classify malicious codes when the amount of samples is insufficient such as targeting type malicious code. As a result of the study, we confirmed that the accuracy of 97% can be achieved even with a small amount of data by applying the Memory Augmented Neural Networks model.