• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.03 seconds

Comparison of Stock Price Forecasting Performance by Ensemble Combination Method (앙상블 조합 방법에 따른 주가 예측 성능 비교)

  • Yang, Huyn-Sung;Park, Jun;So, Won-Ho;Sim, Chun-Bo
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.524-527
    • /
    • 2022
  • 본 연구에서는 머신러닝(Machine Learning, ML)과 딥러닝(Deep Learning, DL) 모델을 앙상블(Ensemble)하여 어떠한 주가 예측 방법이 우수한지에 대한 연구를 하고자 한다. 연구에 사용된 모델은 하이퍼파라미터(Hyperparameter) 조정을 통하여 최적의 결과를 출력한다. 앙상블 방법은 머신러닝과 딥러닝 모델의 앙상블, 머신러닝 모델의 앙상블, 딥러닝 모델의 앙상블이다. 세 가지 방법으로 얻은 결과를 평균 제곱근 오차(Root Mean Squared Error, RMSE)로 비교 분석하여 최적의 방법을 찾고자 한다. 제안한 방법은 주가 예측 연구의 시간과 비용을 절약하고, 최적 성능 모델 판별에 도움이 될 수 있다고 사료된다.

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.

Analysis of customer churn prediction in telecom industry using Machine learning & Deep learning (머신러닝, 딥러닝을 이용한 통신서비스 이용고객 분석 및 이탈 예측)

  • Kim, Sang-Hwi;Kim, Ki-Won;Kim, Yoo-Sung;Yoon, Tae-Young;Jeon, Jae-Wan
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.568-571
    • /
    • 2020
  • 최근 빅데이터 기술이 다양한 산업과 접목되고 있다. 그 중 고객 이탈 방지가 최우선인 통신사들 또한 예외가 아닐 수 없다. 이에 본 논문은 통신사 데이터에 머신러닝 알고리즘을 접목. 이탈 예측과 데이터 추이를 분석하고, 이를 시각화 하여 일목요연하게 표출하는 과정을 제공함으로서 통신사의 고객 유치 정책을 위한 토대를 마련할 것이다.

Electrical equipment pattern analysis using Class Activation Map (Class Activation Map을 활용한 전력 설비 패턴의 주요원인 분석)

  • Jang, Young-Jun;Kim, Ji-Ho;Choi, Young-Jin;lee, Hong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.75-77
    • /
    • 2021
  • 전력 생산의 효율을 높이고 지속적인 공정관리를 위해 전력 설비 데이터의 패턴을 분석하고 원인이 되는 주요 변수를 찾는 것이 중요하다. 따라서, 본 연구에서는 전력 설비 데이터의 패턴을 분석하기 위해 데이터를 군집화하고 연구 방법으로 Decision Tree, Random Forest와 ResNet을 이용하여 패턴을 분류하였다. Class Activation Map을 이용하여 설비데이터의 원인이 되는 주요 변수를 확인하였다. 본 연구를 통해 전력 설비 데이터의 분류 및 원인 분석이 가능한 통합적 솔루션을 제시하고자 한다.

  • PDF

A Lightweight Deep Learning Model for Line-Art Colorization Using Two Stage Generator Model (이중 생성자를 사용한 저용량 선화 자동채색 모델)

  • Lee, Yeongseop;Lee, Seongjin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.19-20
    • /
    • 2020
  • 미디어 산업의 발전으로 스토리보드와 같은 선화 이미지의 자동채색 연구가 국내외에서 진행되고 있다. 하지만 자동채색 모델 용량에 초점을 두는 연구는 아직 진행되고 있지 않다. 기존 자동채색 연구는 모델 용량이 최소 567MB 이상으로 모델 용량이 큰 단점을 가지고 있다. 본 논문에서는 채색을 2단계로 나누는 이중 생성자 구조와 기존 U-Net을 개선한 생성자를 사용해 기존 U-Net에 비해 30%, VGG16/19를 사용한 기법과 비교해 최대 85% 작은 106MB 모델을 생성했고 FID(Fréchet Inception Distance)를 통한 이미지 평가결과 512x512px에서 153.69의 채색성능을 얻었다.

  • PDF

Comparison of real estate index prediction models using machine learning and deep learning (머신러닝과 딥러닝을 이용한 부동산 지수 예측 모델 비교)

  • Park, Su Min;Lee, Yeon Jae;Park, Ju Hyun;Park, Ju A;Lim, Jin Seop;Kim, Hyon Hee
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1156-1159
    • /
    • 2021
  • 수도권을 중심으로 한 부동산 가격 상승이 지속적으로 진행되고 있다. 한국은행에서는 기준금리 인상으로 과열된 부동산 시장의 안정을 바라고 있다. 하지만 기준금리 인상이 부동산 시장에 미치는 영향이 크지 않다고 보는 시각도 많다. 이에 본 논문에서는 머신러닝과 딥러닝을 이용하여 서울 지역의 부동산 매매지수를 예측하고 기준금리를 추가 변수로 이용하여 결과를 비교하였다. 실험 결과 선형적으로 증가 중인 시장 특성상 전통적 모델인 선형회귀가 우수한 성능을 보였으며, 기준 금리를 변수로 추가한 경우 예측력이 근소하게 증가하였으나 그 영향은 크지 않음을 볼 수 있었다.

A Study on Short-Term Electricity Demand Prediction Using Stacking Ensemble of Machine Learning and Deep Learning Ensemble Models (머신러닝 및 딥러닝 모델의 스태킹 앙상블을 이용한 단기 전력수요 예측에 관한 연구)

  • Lee, Jung-Il;Kim, Dong-il
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.566-569
    • /
    • 2021
  • 전력수요는 월, 요일 및 시간의 계절성(Seasonality)을 보이는 데이터이다. 각 계절성에 따라 특성이 다르기 때문에, 전력수요를 예측하기 위해서는 계절성의 특성을 고려한 다양한 모델을 선정하고, 병합하는 방법이 필요하다. 본 연구에서는 전력수요의 계절성을 고려한 다양한 예측모델을 병합하여 이용할 수 있도록 스태킹 앙상블 적용하고 실험결과를 기술한다. 또한, 162개 도시의 기상 데이터와 인구 데이터를 예측에 이용하는 방법, Regression 모델과 Time-series모델에 입력하는 특징(Feature)의 전처리 방법, 베이지안 최적화를 이용한 머신러닝 및 딥러닝 모델의 하이퍼파라메터 최적화 방법을 제시한다.

Comparison of Number Recognition Rates According to Changes in Convolutional Neural Structure (합성곱 신경망 네트워크 구조 변화에 따른 숫자 인식률 비교)

  • Lee, Jong-Chan;Kim, Young-Hyun;Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.397-399
    • /
    • 2022
  • Digit recognition is one of the applications of deep learning, which appears in many fields. CNN network enables us to recognize handwritten digits. Also, It can process various types of data. As we stack more layers in CNN network, we expect more performance improvements. In this paper, we added a convolution layer. as a result, we achieved an accuracy improvement from 76.96% to 98.87%, which is a nearly 21.81% increase.

  • PDF

Implementation of a Deep Learning-based Keypoint Detection Model for Industrial Shape Quality Inspection Vision (산업용 형상 품질 검사 비전을 위한 딥러닝 기반 형상 키포인트 검출 모델 구현)

  • Sukchoo Kim;JoongJang Kwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.37-38
    • /
    • 2023
  • 본 논문에서는 딥러닝을 기반으로 하는 키포인트 인식 모델을 산업용 품질검사 머신비전에 응용하는 방법을 제안한다. 전이학습 방법을 이용하여 딥러닝 모델의 인식률을 높이는 방법을 제시하였고, 전이시킨 특성 추출 모델에 대해 추가로 데이터 세트에 대한 학습을 진행하는 것이 특성추출 모델의 초기 ImageNet 가중치를 동결시켜 학습하는 것보다 학습 속도나 정확도가 높다는 것을 보여준다. 실험을 통해 딥러닝을 응용하는 산업용 품질 검사 공정에는 특성추출 모델의 추가 학습이 중요하다는 점을 확인할 수 있었다.

  • PDF

Trend of Network Traffic Classification Using Machine Learning and Deep Learning (머신러닝과 딥러닝을 이용한 네트워크 트래픽 분류 연구 동향)

  • JungMin Lee;Yeonjoon Lee
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.576-578
    • /
    • 2023
  • 네트워크 트래픽 연구는 오랜 기간 지속되어 왔으며, 구현이 비교적 간단하고 높은 정확도를 가지는 기존의 분류 방식들이 오랫동안 사용되어왔다. 그러나 네트워크 기술과 암호화 기술의 발달로 기존의 분류 방식들은 더 이상 분류 결과에 대한 신뢰성을 보장할 수 없으며, 이에 따라 새로운 분류 방식의 필요성이 대두되었다. 최근 머신러닝과 딥러닝을 네트워크 트래픽 분류에 적용하는 연구가 활발히 이루어지고 있으며 획기적인 모델들이 많이 제안되었고, 그 분류 성능 또한 입증되었다. 그러나 여전히 여러 가지 극복해야 할 문제점은 남아있으며 이러한 문제점을 해결하기 위한 연구가 앞으로도 계속 진행될 것으로 보인다. 본 논문은 머신러닝과 딥러닝을 이용한 네트워크 트래픽 분류 연구 동향에 대해 살펴보고 이러한 연구들이 가지는 문제점을 짚고 넘어가며 앞으로의 네트워크 트래픽 분류 연구의 방향성에 대해 이야기 하고자 한다.