• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.03 seconds

Lightweight CNN-based Expression Recognition on Humanoid Robot

  • Zhao, Guangzhe;Yang, Hanting;Tao, Yong;Zhang, Lei;Zhao, Chunxiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1188-1203
    • /
    • 2020
  • The human expression contains a lot of information that can be used to detect complex conditions such as pain and fatigue. After deep learning became the mainstream method, the traditional feature extraction method no longer has advantages. However, in order to achieve higher accuracy, researchers continue to stack the number of layers of the neural network, which makes the real-time performance of the model weak. Therefore, this paper proposed an expression recognition framework based on densely concatenated convolutional neural networks to balance accuracy and latency and apply it to humanoid robots. The techniques of feature reuse and parameter compression in the framework improved the learning ability of the model and greatly reduced the parameters. Experiments showed that the proposed model can reduce tens of times the parameters at the expense of little accuracy.

Drivable Area Detection with Region-based CNN Models to Support Autonomous Driving

  • Jeon, Hyojin;Cho, Soosun
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.41-44
    • /
    • 2020
  • In autonomous driving, object recognition based on machine learning is one of the core software technologies. In particular, the object recognition using deep learning becomes an essential element for autonomous driving software to operate. In this paper, we introduce a drivable area detection method based on Region-based CNN model to support autonomous driving. To effectively detect the drivable area, we used the BDD dataset for model training and demonstrated its effectiveness. As a result, our R-CNN model using BDD datasets showed interesting results in training and testing for detection of drivable areas.

Artificial Intelligence: Will It Replace Human Medical Doctors? (인공지능: 미래의사의 역할을 대체할 것인가)

  • Choi, Yoon Sup
    • Korean Medical Education Review
    • /
    • v.18 no.2
    • /
    • pp.47-50
    • /
    • 2016
  • Development of artificial intelligence is expected to revolutionize today's medicine. In fact, medicine was one of the areas to which advances in artificial intelligence technology were first applied. Recently, state-of-the-art artificial intelligence, especially deep learning technology, has been actively utilized to treat cancer patients and analyze medical image data. Application of artificial intelligence has the potential to fundamentally change various aspects of medicine, including the role of human doctors, the clinical decision-making process, and even overall healthcare systems. Facing such fundamental changes is unavoidable, and we need to prepare to effectively integrate artificial intelligence into our medical system. We should re-define the role of human doctors, and accordingly, medical education should also be altered. In this article, we will discuss the current status of artificial intelligence in medicine and how we can prepare for such changes.

A Survey of Arabic Thematic Sentiment Analysis Based on Topic Modeling

  • Basabain, Seham
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.155-162
    • /
    • 2021
  • The expansion of the world wide web has led to a huge amount of user generated content over different forums and social media platforms, these rich data resources offer the opportunity to reflect, and track changing public sentiments and help to develop proactive reactions strategies for decision and policy makers. Analysis of public emotions and opinions towards events and sentimental trends can help to address unforeseen areas of public concerns. The need of developing systems to analyze these sentiments and the topics behind them has emerged tremendously. While most existing works reported in the literature have been carried out in English, this paper, in contrast, aims to review recent research works in Arabic language in the field of thematic sentiment analysis and which techniques they have utilized to accomplish this task. The findings show that the prevailing techniques in Arabic topic-based sentiment analysis are based on traditional approaches and machine learning methods. In addition, it has been found that considerably limited recent studies have utilized deep learning approaches to build high performance models.

Recent Trends of Hyperspectral Imaging Technology (초분광 이미징 기술동향)

  • Lee, M.S.;Kim, K.S.;Min, G.;Son, D.H.;Kim, J.E.;Kim, S.C.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.86-97
    • /
    • 2019
  • Over the past 30 years, significant developments have been made in hyperspectral imaging (HSI) technologies that can provide end users with rich spectral, spatial, and temporal information. Owing to the advances in miniaturization, cost reduction, real-time processing, and analytical methods, HSI technologies have a wide range of applications from remote-sensing to healthcare, military, and the environment. In this study, we focus on the latest trends of HSI technologies, analytical methods, and their applications. In particular, improved machine learning techniques, such as deep learning, allows the full use of HSI technologies in classification, clustering, and spectral mixture algorithms. Finally, we describe the status of HSI technology development for skin diagnostics.

A Study on the History, Classification and Development Direction of Artificial Intelligence (인공지능의 역사, 분류 그리고 발전 방향에 관한 연구)

  • Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.307-312
    • /
    • 2021
  • Artificial Intelligence has a long history and is used in various fields including image recognition and automatic translation. Therefore, when we first encounter artificial intelligence, many terms, concepts and technologies often have difficulty in setting or implementing research direction. This study summarized important concepts related to artificial intelligence and summarized the progress of the past 60 years to help researcher suffering from these difficulties. Through this, it is possible to establish the basis for the use of vast artificial intelligence technologies and establish the right direction for research.

Railroad Surface Defect Segmentation Using a Modified Fully Convolutional Network

  • Kim, Hyeonho;Lee, Suchul;Han, Seokmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4763-4775
    • /
    • 2020
  • This research aims to develop a deep learning-based method that automatically detects and segments the defects on railroad surfaces to reduce the cost of visual inspection of the railroad. We developed our segmentation model by modifying a fully convolutional network model [1], a well-known segmentation model used for machine learning, to detect and segment railroad surface defects. The data used in this research are images of the railroad surface with one or more defect regions. Railroad images were cropped to a suitable size, considering the long height and relatively narrow width of the images. They were also normalized based on the variance and mean of the data images. Using these images, the suggested model was trained to segment the defect regions. The proposed method showed promising results in the segmentation of defects. We consider that the proposed method can facilitate decision-making about railroad maintenance, and potentially be applied for other analyses.

Improving Abstractive Summarization by Training Masked Out-of-Vocabulary Words

  • Lee, Tae-Seok;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.344-358
    • /
    • 2022
  • Text summarization is the task of producing a shorter version of a long document while accurately preserving the main contents of the original text. Abstractive summarization generates novel words and phrases using a language generation method through text transformation and prior-embedded word information. However, newly coined words or out-of-vocabulary words decrease the performance of automatic summarization because they are not pre-trained in the machine learning process. In this study, we demonstrated an improvement in summarization quality through the contextualized embedding of BERT with out-of-vocabulary masking. In addition, explicitly providing precise pointing and an optional copy instruction along with BERT embedding, we achieved an increased accuracy than the baseline model. The recall-based word-generation metric ROUGE-1 score was 55.11 and the word-order-based ROUGE-L score was 39.65.

User Interface Application for Cancer Classification using Histopathology Images

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • User interface for cancer classification system is a software application with clinician's friendly tools and functions to diagnose cancer from pathology images. Pathology evolved from manual diagnosis to computer-aided diagnosis with the help of Artificial Intelligence tools and algorithms. In this paper, we explained each block of the project life cycle for the implementation of automated breast cancer classification software using AI and machine learning algorithms to classify normal and invasive breast histology images. The system was designed to help the pathologists in an automatic and efficient diagnosis of breast cancer. To design the classification model, Hematoxylin and Eosin (H&E) stained breast histology images were obtained from the ICIAR Breast Cancer challenge. These images are stain normalized to minimize the error that can occur during model training due to pathological stains. The normalized dataset was fed into the ResNet-34 for the classification of normal and invasive breast cancer images. ResNet-34 gave 94% accuracy, 93% F Score, 95% of model Recall, and 91% precision.

A Real-Time Sound Recognition System with a Decision Logic of Random Forest for Robots (Random Forest를 결정로직으로 활용한 로봇의 실시간 음향인식 시스템 개발)

  • Song, Ju-man;Kim, Changmin;Kim, Minook;Park, Yongjin;Lee, Seoyoung;Son, Jungkwan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.273-281
    • /
    • 2022
  • In this paper, we propose a robot sound recognition system that detects various sound events. The proposed system is designed to detect various sound events in real-time by using a microphone on a robot. To get real-time performance, we use a VGG11 model which includes several convolutional neural networks with real-time normalization scheme. The VGG11 model is trained on augmented DB through 24 kinds of various environments (12 reverberation times and 2 signal to noise ratios). Additionally, based on random forest algorithm, a decision logic is also designed to generate event signals for robot applications. This logic can be used for specific classes of acoustic events with better performance than just using outputs of network model. With some experimental results, the performance of proposed sound recognition system is shown on real-time device for robots.