• 제목/요약/키워드: deep machine learning

Search Result 1,085, Processing Time 0.029 seconds

A Bulge Detection Model in Cultural Asset images using Ensemble of Deep Features (심층 특징들의 앙상블을 사용한 목조 문화재 영상에서의 배부름 감지 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.129-131
    • /
    • 2021
  • 본 논문에서는 심층 특징 앙상블을 사용하여 목조 문화재의 변위 현상 중 하나인 배부름 현상을 감지할 수 있는 모델을 제안한다. 우선 총 4개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 4개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 심층 특징 앙상블 기법을 사용한 모델이 앙상블 기법을 사용하지 않은 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로 부터 우리가 제안한 방법이 목재 문화재의 배부름 현상에 대한 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

Deep learning of sweep signal for damage detection on the surface of concrete

  • Gao Shanga;Jun Chen
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.

A Method of Activity Recognition in Small-Scale Activity Classification Problems via Optimization of Deep Neural Networks (심층 신경망의 최적화를 통한 소규모 행동 분류 문제의 행동 인식 방법)

  • Kim, Seunghyun;Kim, Yeon-Ho;Kim, Do-Yeon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.155-160
    • /
    • 2017
  • Recently, Deep learning has been used successfully to solve many recognition problems. It has many advantages over existing machine learning methods that extract feature points through hand-crafting. Deep neural networks for human activity recognition split video data into frame images, and then classify activities by analysing the connectivity of frame images according to the time. But it is difficult to apply to actual problems which has small-scale activity classes. Because this situations has a problem of overfitting and insufficient training data. In this paper, we defined 5 type of small-scale human activities, and classified them. We construct video database using 700 video clips, and obtained a classifying accuracy of 74.00%.

Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification

  • Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3917-3941
    • /
    • 2019
  • The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.

Separation Prediction Model by Concentration based on Deep Neural Network for Improving PM10 Forecast Accuracy (PM10 예보 정확도 향상을 위한 Deep Neural Network 기반 농도별 분리 예측 모델)

  • Cho, Kyoung-woo;Jung, Yong-jin;Lee, Jong-sung;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • The human impact of particulate matter are revealed and demand for improved forecast accuracy is increasing. Recently, efforts is made to improve the accuracy of PM10 predictions by using machine learning, but prediction performance is decreasing due to the particulate matter data with a large rate of low concentration occurrence. In this paper, separation prediction model by concentration is proposed to improve the accuracy of PM10 particulate matter forecast. The low and high concentration prediction model was designed using the weather and air pollution factors in Cheonan, and the performance comparison with the prediction models was performed. As a result of experiments with RMSE, MAPE, correlation coefficient, and AQI accuracy, it was confirmed that the predictive performance was improved, and that 20.62% of the AQI high-concentration prediction performance was improved.

Deep Neural Architecture for Recovering Dropped Pronouns in Korean

  • Jung, Sangkeun;Lee, Changki
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.257-265
    • /
    • 2018
  • Pronouns are frequently dropped in Korean sentences, especially in text messages in the mobile phone environment. Restoring dropped pronouns can be a beneficial preprocessing task for machine translation, information extraction, spoken dialog systems, and many other applications. In this work, we address the problem of dropped pronoun recovery by resolving two simultaneous subtasks: detecting zero-pronoun sentences and determining the type of dropped pronouns. The problems are statistically modeled by encoding the sentence and classifying types of dropped pronouns using a recurrent neural network (RNN) architecture. Various RNN-based encoding architectures were investigated, and the stacked RNN was shown to be the best model for Korean zero-pronoun recovery. The proposed method does not require any manual features to be implemented; nevertheless, it shows good performance.

Acoustic Event Detection in Multichannel Audio Using Gated Recurrent Neural Networks with High-Resolution Spectral Features

  • Kim, Hyoung-Gook;Kim, Jin Young
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.832-840
    • /
    • 2017
  • Recently, deep recurrent neural networks have achieved great success in various machine learning tasks, and have also been applied for sound event detection. The detection of temporally overlapping sound events in realistic environments is much more challenging than in monophonic detection problems. In this paper, we present an approach to improve the accuracy of polyphonic sound event detection in multichannel audio based on gated recurrent neural networks in combination with auditory spectral features. In the proposed method, human hearing perception-based spatial and spectral-domain noise-reduced harmonic features are extracted from multichannel audio and used as high-resolution spectral inputs to train gated recurrent neural networks. This provides a fast and stable convergence rate compared to long short-term memory recurrent neural networks. Our evaluation reveals that the proposed method outperforms the conventional approaches.

A CTR Prediction Approach for Text Advertising Based on the SAE-LR Deep Neural Network

  • Jiang, Zilong;Gao, Shu;Dai, Wei
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1052-1070
    • /
    • 2017
  • For the autoencoder (AE) implemented as a construction component, this paper uses the method of greedy layer-by-layer pre-training without supervision to construct the stacked autoencoder (SAE) to extract the abstract features of the original input data, which is regarded as the input of the logistic regression (LR) model, after which the click-through rate (CTR) of the user to the advertisement under the contextual environment can be obtained. These experiments show that, compared with the usual logistic regression model and support vector regression model used in the field of predicting the advertising CTR in the industry, the SAE-LR model has a relatively large promotion in the AUC value. Based on the improvement of accuracy of advertising CTR prediction, the enterprises can accurately understand and have cognition for the needs of their customers, which promotes the multi-path development with high efficiency and low cost under the condition of internet finance.

Video augmentation technique for human action recognition using genetic algorithm

  • Nida, Nudrat;Yousaf, Muhammad Haroon;Irtaza, Aun;Velastin, Sergio A.
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.327-338
    • /
    • 2022
  • Classification models for human action recognition require robust features and large training sets for good generalization. However, data augmentation methods are employed for imbalanced training sets to achieve higher accuracy. These samples generated using data augmentation only reflect existing samples within the training set, their feature representations are less diverse and hence, contribute to less precise classification. This paper presents new data augmentation and action representation approaches to grow training sets. The proposed approach is based on two fundamental concepts: virtual video generation for augmentation and representation of the action videos through robust features. Virtual videos are generated from the motion history templates of action videos, which are convolved using a convolutional neural network, to generate deep features. Furthermore, by observing an objective function of the genetic algorithm, the spatiotemporal features of different samples are combined, to generate the representations of the virtual videos and then classified through an extreme learning machine classifier on MuHAVi-Uncut, iXMAS, and IAVID-1 datasets.

Application and Analysis of Machine Learning for Discriminating Image Copyright (이미지 저작권 판별을 위한 기계학습 적용과 분석)

  • Kim, Sooin;Lee, Sangwoo;Kim, Hakhee;Kim, Wongyum;Hwang, Doosung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.899-902
    • /
    • 2021
  • 본 논문은 이미지 저작권 유무 판별을 분류 문제로 정의하고 기계학습과 합성곱 신경망 모델을 적용하여 해결한다. 학습을 위해 입력 데이터를 고정된 크기로 변환하고 정규화 과정을 수행하여 학습 데이터셋을 준비한다. 저작권 유무 판별 실험에서 SVM, k-NN, 랜덤포레스트, VGG-Net 모델의 분류 성능을 비교 분석한다. VGG-Net C 모델의 결과가 다른 알고리즘과 비교 시 10.65% 높은 성능을 나타냈으며 배치 정규화 층을 이용하여 과적합 현상을 개선했다.