• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.027 seconds

Development of Real-Time Objects Segmentation for Dual-Camera Synthesis in iOS (iOS 기반 실시간 객체 분리 및 듀얼 카메라 합성 개발)

  • Jang, Yoo-jin;Kim, Ji-yeong;Lee, Ju-hyun;Hwang, Jun
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.37-43
    • /
    • 2021
  • In this paper, we study how objects from front and back cameras can be recognized in real time in a mobile environment to segment regions of object pixels and synthesize them through image processing. To this work, we applied DeepLabV3 machine learning model to dual cameras provided by Apple's iOS. We also propose methods using Core Image and Core Graphics libraries from Apple for image synthesis and postprocessing. Furthermore, we improved CPU usage than previous works and compared the throughput rates and results of Depth and DeepLabV3. Finally, We also developed a camera application using these two methods.

Deep Learning Based Tree Recognition rate improving Method for Elementary and Middle School Learning

  • Choi, Jung-Eun;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.9-16
    • /
    • 2019
  • The goal of this study is to propose an efficient model for recognizing and classifying tree images to measure the accuracy that can be applied to smart devices during class. From the 2009 revised textbook to the 2015 revised textbook, the learning objective to the fourth-grade science textbook of elementary schools was added to the plant recognition utilizing smart devices. In this study, we compared the recognition rates of trees before and after retraining using a pre-trained inception V3 model, which is the support of the Google Inception V3. In terms of tree recognition, it can distinguish several features, including shapes, bark, leaves, flowers, and fruits that may lead to the recognition rate. Furthermore, if all the leaves of trees may fall during winter, it may challenge to identify the type of tree, as only the bark of the tree will remain some leaves. Therefore, the effective tree classification model is presented through the combination of the images by tree type and the method of combining the model for the accuracy of each tree type. I hope that this model will apply to smart devices used in educational settings.

Defect Classification of Cross-section of Additive Manufacturing Using Image-Labeling (이미지 라벨링을 이용한 적층제조 단면의 결함 분류)

  • Lee, Jeong-Seong;Choi, Byung-Joo;Lee, Moon-Gu;Kim, Jung-Sub;Lee, Sang-Won;Jeon, Yong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.7-15
    • /
    • 2020
  • Recently, the fourth industrial revolution has been presented as a new paradigm and additive manufacturing (AM) has become one of the most important topics. For this reason, process monitoring for each cross-sectional layer of additive metal manufacturing is important. Particularly, deep learning can train a machine to analyze, optimize, and repair defects. In this paper, image classification is proposed by learning images of defects in the metal cross sections using the convolution neural network (CNN) image labeling algorithm. Defects were classified into three categories: crack, porosity, and hole. To overcome a lack-of-data problem, the amount of learning data was augmented using a data augmentation algorithm. This augmentation algorithm can transform an image to 180 images, increasing the learning accuracy. The number of training and validation images was 25,920 (80 %) and 6,480 (20 %), respectively. An optimized case with a combination of fully connected layers, an optimizer, and a loss function, showed that the model accuracy was 99.7 % and had a success rate of 97.8 % for 180 test images. In conclusion, image labeling was successfully performed and it is expected to be applied to automated AM process inspection and repair systems in the future.

Juvenile Cyber Deviance Factors and Predictive Model Development Using a Mixed Method Approach (사이버비행 요인 파악 및 예측모델 개발: 혼합방법론 접근)

  • Shon, Sae Ah;Shin, Woo Sik;Kim, Hee Woong
    • The Journal of Information Systems
    • /
    • v.30 no.2
    • /
    • pp.29-56
    • /
    • 2021
  • Purpose Cyber deviance of adolescents has become a serious social problem. With a widespread use of smartphones, incidents of cyber deviance have increased in Korea and both quantitative and qualitative damages such as suicide and depression are increasing. Research has been conducted to understand diverse factors that explain adolescents' delinquency in cyber space. However, most previous studies have focused on a single theory or perspective. Therefore, this study aims to comprehensively analyze motivations of juvenile cyber deviance and to develop a predictive model for delinquent adolescents by integrating four different theories on cyber deviance. Design/methodology/approach By using data from Korean Children & Youth Panel Survey 2010, this study extracts 27 potential factors for cyber deivance based on four background theories including general strain, social learning, social bonding, and routine activity theories. Then this study employs econometric analysis to empirically assess the impact of potential factors and utilizes a machine learning approach to predict the likelihood of cyber deviance by adolescents. Findings This study found that general strain factors as well as social learning factors have positive effects on cyber deviance. Routine activity-related factors such as real-life delinquent behaviors and online activities also positively influence the likelihood of cyber diviance. On the other hand, social bonding factors such as community commitment and attachment to community lessen the likelihood of cyber deviance while social factors related to school activities are found to have positive impacts on cyber deviance. This study also found a predictive model using a deep learning algorithm indicates the highest prediction performance. This study contributes to the prevention of cyber deviance of teenagers in practice by understanding motivations for adolescents' delinquency and predicting potential cyber deviants.

Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems (산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구)

  • JUN, SANGSO;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.691-708
    • /
    • 2022
  • As the technology of machine learning and deep learning became common, it began to be applied to research on anomaly(abnormal) detection of industrial control systems. In Korea, the HAI dataset was developed and published to activate artificial intelligence research for abnormal detection of industrial control systems, and an AI contest for detecting industrial control system security threats is being conducted. Most of the anomaly detection studies have been to create a learning model with improved performance through the ensemble model method, which is applied either by modifying the existing deep learning algorithm or by applying it together with other algorithms. In this study, a study was conducted to improve the performance of anomaly detection with a post-processing method that detects abnormal data and corrects the labeling results, rather than the learning algorithm and data pre-processing process. Results It was confirmed that the results were improved by about 10% or more compared to the anomaly detection performance of the existing model.

Deep learning-based recovery method for missing structural temperature data using LSTM network

  • Liu, Hao;Ding, You-Liang;Zhao, Han-Wei;Wang, Man-Ya;Geng, Fang-Fang
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.109-124
    • /
    • 2020
  • Benefiting from the massive monitoring data collected by the Structural health monitoring (SHM) system, scholars can grasp the complex environmental effects and structural state during structure operation. However, the monitoring data is often missing due to sensor faults and other reasons. It is necessary to study the recovery method of missing monitoring data. Taking the structural temperature monitoring data of Nanjing Dashengguan Yangtze River Bridge as an example, the long short-term memory (LSTM) network-based recovery method for missing structural temperature data is proposed in this paper. Firstly, the prediction results of temperature data using LSTM network, support vector machine (SVM), and wavelet neural network (WNN) are compared to verify the accuracy advantage of LSTM network in predicting time series data (such as structural temperature). Secondly, the application of LSTM network in the recovery of missing structural temperature data is discussed in detail. The results show that: the LSTM network can effectively recover the missing structural temperature data; incorporating more intact sensor data as input will further improve the recovery effect of missing data; selecting the sensor data which has a higher correlation coefficient with the data we want to recover as the input can achieve higher accuracy.

Extraction of Protein-Protein Interactions based on Convolutional Neural Network (CNN) (Convolutional Neural Network (CNN) 기반의 단백질 간 상호 작용 추출)

  • Choi, Sung-Pil
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2017
  • In this paper, we propose a revised Deep Convolutional Neural Network (DCNN) model to extract Protein-Protein Interaction (PPIs) from the scientific literature. The proposed method has the merit of improving performance by applying various global features in addition to the simple lexical features used in conventional relation extraction approaches. In the experiments using AIMed, which is the most famous collection used for PPI extraction, the proposed model shows state-of-the art scores (78.0 F-score) revealing the best performance so far in this domain. Also, the paper shows that, without conducting feature engineering using complicated language processing, convolutional neural networks with embedding can achieve superior PPIE performance.

Lane Detection System using CNN (CNN을 사용한 차선검출 시스템)

  • Kim, Jihun;Lee, Daesik;Lee, Minho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2016
  • Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC

Facial Age Estimation Using Convolutional Neural Networks Based on Inception Modules (인셉션 모듈 기반 컨볼루션 신경망을 이용한 얼굴 연령 예측)

  • Sukh-Erdene, Bolortuya;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1224-1231
    • /
    • 2018
  • Automatic age estimation has been used in many social network applications, practical commercial applications, and human-computer interaction visual-surveillance biometrics. However, it has rarely been explored. In this paper, we propose an automatic age estimation system, which includes face detection and convolutional deep learning based on an inception module. The latter is a 22-layer-deep network that serves as the particular category of the inception design. To evaluate the proposed approach, we use 4,000 images of eight different age groups from the Adience age dataset. k-fold cross-validation (k = 5) is applied. A comparison of the performance of the proposed work and recent related methods is presented. The results show that the proposed method significantly outperforms existing methods in terms of the exact accuracy and off-by-one accuracy. The off-by-one accuracy is when the result is off by one adjacent age label to the above or below. For the exact accuracy, the age label of "60+" is classified with the highest accuracy of 76%.

Artificial Intelligence Applications to Music Composition (인공지능 기반 작곡 프로그램 현황 및 제언)

  • Lee, Sunghoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.261-266
    • /
    • 2018
  • This study aimed to provide an overview of artificial intelligence based music composition programs. The artificial intelligence-based composition program has shown remarkable growth as the development of deep neural network theory and the improvement of big data processing technology. Accordingly, artificial intelligence based composition programs for composing classical music and pop music have been proposed variously in academia and industry. But there are several limitations: devaluation in general populations, missing valuable materials, lack of relevant laws, technology-led industries exclusive to the arts, and so on. When effective measures are taken against these limitations, artificial intelligence based technology will play a significant role in fostering national competitiveness.