• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.143 seconds

Prediction of Air Temperature and Relative Humidity in Greenhouse via a Multilayer Perceptron Using Environmental Factors (환경요인을 이용한 다층 퍼셉트론 기반 온실 내 기온 및 상대습도 예측)

  • Choi, Hayoung;Moon, Taewon;Jung, Dae Ho;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 2019
  • Temperature and relative humidity are important factors in crop cultivation and should be properly controlled for improving crop yield and quality. In order to control the environment accurately, we need to predict how the environment will change in the future. The objective of this study was to predict air temperature and relative humidity at a future time by using a multilayer perceptron (MLP). The data required to train MLP was collected every 10 min from Oct. 1, 2016 to Feb. 28, 2018 in an eight-span greenhouse ($1,032m^2$) cultivating mango (Mangifera indica cv. Irwin). The inputs for the MLP were greenhouse inside and outside environment data, and set-up and operating values of environment control devices. By using these data, the MLP was trained to predict the air temperature and relative humidity at a future time of 10 to 120 min. Considering typical four seasons in Korea, three-day data of the each season were compared as test data. The MLP was optimized with four hidden layers and 128 nodes for air temperature ($R^2=0.988$) and with four hidden layers and 64 nodes for relative humidity ($R^2=0.990$). Due to the characteristics of MLP, the accuracy decreased as the prediction time became longer. However, air temperature and relative humidity were properly predicted regardless of the environmental changes varied from season to season. For specific data such as spray irrigation, however, the numbers of trained data were too small, resulting in poor predictive accuracy. In this study, air temperature and relative humidity were appropriately predicted through optimization of MLP, but were limited to the experimental greenhouse. Therefore, it is necessary to collect more data from greenhouses at various places and modify the structure of neural network for generalization.

KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain (KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용)

  • Kim, Donggyu;Lee, Dongwook;Park, Jangwon;Oh, Sungwoo;Kwon, Sungjun;Lee, Inyong;Choi, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.191-206
    • /
    • 2022
  • Recently, it is a de-facto approach to utilize a pre-trained language model(PLM) to achieve the state-of-the-art performance for various natural language tasks(called downstream tasks) such as sentiment analysis and question answering. However, similar to any other machine learning method, PLM tends to depend on the data distribution seen during the training phase and shows worse performance on the unseen (Out-of-Distribution) domain. Due to the aforementioned reason, there have been many efforts to develop domain-specified PLM for various fields such as medical and legal industries. In this paper, we discuss the training of a finance domain-specified PLM for the Korean language and its applications. Our finance domain-specified PLM, KB-BERT, is trained on a carefully curated financial corpus that includes domain-specific documents such as financial reports. We provide extensive performance evaluation results on three natural language tasks, topic classification, sentiment analysis, and question answering. Compared to the state-of-the-art Korean PLM models such as KoELECTRA and KLUE-RoBERTa, KB-BERT shows comparable performance on general datasets based on common corpora like Wikipedia and news articles. Moreover, KB-BERT outperforms compared models on finance domain datasets that require finance-specific knowledge to solve given problems.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Contactless Data Society and Reterritorialization of the Archive (비접촉 데이터 사회와 아카이브 재영토화)

  • Jo, Min-ji
    • The Korean Journal of Archival Studies
    • /
    • no.79
    • /
    • pp.5-32
    • /
    • 2024
  • The Korean government ranked 3rd among 193 UN member countries in the UN's 2022 e-Government Development Index. Korea, which has consistently been evaluated as a top country, can clearly be said to be a leading country in the world of e-government. The lubricant of e-government is data. Data itself is neither information nor a record, but it is a source of information and records and a resource of knowledge. Since administrative actions through electronic systems have become widespread, the production and technology of data-based records have naturally expanded and evolved. Technology may seem value-neutral, but in fact, technology itself reflects a specific worldview. The digital order of new technologies, armed with hyper-connectivity and super-intelligence, not only has a profound influence on traditional power structures, but also has an a similar influence on existing information and knowledge transmission media. Moreover, new technologies and media, including data-based generative artificial intelligence, are by far the hot topic. It can be seen that the all-round growth and spread of digital technology has led to the augmentation of human capabilities and the outsourcing of thinking. This also involves a variety of problems, ranging from deep fakes and other fake images, auto profiling, AI lies hallucination that creates them as if they were real, and copyright infringement of machine learning data. Moreover, radical connectivity capabilities enable the instantaneous sharing of vast amounts of data and rely on the technological unconscious to generate actions without awareness. Another irony of the digital world and online network, which is based on immaterial distribution and logical existence, is that access and contact can only be made through physical tools. Digital information is a logical object, but digital resources cannot be read or utilized without some type of device to relay it. In that respect, machines in today's technological society have gone beyond the level of simple assistance, and there are points at which it is difficult to say that the entry of machines into human society is a natural change pattern due to advanced technological development. This is because perspectives on machines will change over time. Important is the social and cultural implications of changes in the way records are produced as a result of communication and actions through machines. Even in the archive field, what problems will a data-based archive society face due to technological changes toward a hyper-intelligence and hyper-connected society, and who will prove the continuous activity of records and data and what will be the main drivers of media change? It is time to research whether this will happen. This study began with the need to recognize that archives are not only records that are the result of actions, but also data as strategic assets. Through this, author considered how to expand traditional boundaries and achieves reterritorialization in a data-driven society.

Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China (인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로)

  • Lee, JaeWon;Oh, SangJin
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.71-90
    • /
    • 2020
  • Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.