• 제목/요약/키워드: deep learning, forensic

검색결과 13건 처리시간 0.021초

일반화 능력이 향상된 CNN 기반 위조 영상 식별 (CNN-Based Fake Image Identification with Improved Generalization)

  • 이정한;박한훈
    • 한국멀티미디어학회논문지
    • /
    • 제24권12호
    • /
    • pp.1624-1631
    • /
    • 2021
  • With the continued development of image processing technology, we live in a time when it is difficult to visually discriminate processed (or tampered) images from real images. However, as the risk of fake images being misused for crime increases, the importance of image forensic science for identifying fake images is emerging. Currently, various deep learning-based identifiers have been studied, but there are still many problems to be used in real situations. Due to the inherent characteristics of deep learning that strongly relies on given training data, it is very vulnerable to evaluating data that has never been viewed. Therefore, we try to find a way to improve generalization ability of deep learning-based fake image identifiers. First, images with various contents were added to the training dataset to resolve the over-fitting problem that the identifier can only classify real and fake images with specific contents but fails for those with other contents. Next, color spaces other than RGB were exploited. That is, fake image identification was attempted on color spaces not considered when creating fake images, such as HSV and YCbCr. Finally, dropout, which is commonly used for generalization of neural networks, was used. Through experimental results, it has been confirmed that the color space conversion to HSV is the best solution and its combination with the approach of increasing the training dataset significantly can greatly improve the accuracy and generalization ability of deep learning-based identifiers in identifying fake images that have never been seen before.

A Deep Learning Approach for Identifying User Interest from Targeted Advertising

  • Kim, Wonkyung;Lee, Kukheon;Lee, Sangjin;Jeong, Doowon
    • Journal of Information Processing Systems
    • /
    • 제18권2호
    • /
    • pp.245-257
    • /
    • 2022
  • In the Internet of Things (IoT) era, the types of devices used by one user are becoming more diverse and the number of devices is also increasing. However, a forensic investigator is restricted to exploit or collect all the user's devices; there are legal issues (e.g., privacy, jurisdiction) and technical issues (e.g., computing resources, the increase in storage capacity). Therefore, in the digital forensics field, it has been a challenge to acquire information that remains on the devices that could not be collected, by analyzing the seized devices. In this study, we focus on the fact that multiple devices share data through account synchronization of the online platform. We propose a novel way of identifying the user's interest through analyzing the remnants of targeted advertising which is provided based on the visited websites or search terms of logged-in users. We introduce a detailed methodology to pick out the targeted advertising from cache data and infer the user's interest using deep learning. In this process, an improved learning model considering the unique characteristics of advertisement is implemented. The experimental result demonstrates that the proposed method can effectively identify the user interest even though only one device is examined.

딥러닝 기술 기반 HEVC로 압축된 영상의 이중 압축 검출 기술 (Deep Learning based HEVC Double Compression Detection)

  • 우딘 쿠툽;양윤모;오병태
    • 방송공학회논문지
    • /
    • 제24권6호
    • /
    • pp.1134-1142
    • /
    • 2019
  • 영상의 이중 압축 검출은 영상의 위조여부를 판단하는 한가지 효과적인 방식이다. 이러한 이중 압축 검출 기술을 바탕으로 HEVC로 압축된 영상의 진위 여부를 판단하는 다양한 종류의 기존 기술들이 소개되었지만, 동일한 압축 환경에서 이중 압축된 영상의 진위 여부를 검출하는 것은 상당히 어려운 일로 여겨지고 있다. 본 논문에서는 동일 압축 환경에서 HEVC의 이중압축 여부를 판단하는 기술로서, Intra모드로 압축된 영상의 분할 정보를 이용하여 판단하는 방식을 제안한다. Coding Unit (CU)와 Transform Unit (TU)의 분할 정보로부터 통계적 특징과 딥러닝 네트워크 기반의 특징을 우선 추출하고, softmax단에서 추출된 특징들을 통합하여 이중 압축 여부를 판단하는 기술을 제안한다. 실험결과를 통해서 제안하고 있는 기술이 WVGA 영상과 HD 영상에서 각각 87.5%와 84.1%의 정확도를 가지며 효과적으로 검출한다는 것을 보여준다,

심층신경망을 이용한 소스 코드 원작자 식별 (Souce Code Identification Using Deep Neural Network)

  • 임지수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권9호
    • /
    • pp.373-378
    • /
    • 2019
  • 현재 프로그래밍 소스들이 온라인에서 공개되어 있기 때문에 무분별한 표절이나 저작권에 대한 문제가 일어나고 있다. 그 중 반복된 저자가 작성한 소스코드는 프로그래밍 특성상 고유의 지문이 있을 수 있다. 본 논문은 구글 코드 잼 프로그램 소스를 심층신경망을 이용한 학습을 통해 각각의 저자를 분별하는 것이다. 이 때 원작자의 소스를 예측 기반 벡터나, 주파수 기반 접근법인 TF-IDF등의 전처리기를 사용하여 입력값들을 벡터화해주고, 심층신경망을 이용한 학습을 통해 각 프로그램 소스 원작자를 식별하고자 한다. 전처리기를 이용하여 언어에 독립적인 학습시스템을 구성하고, 기존의 다른 학습 방법들과 비교하였다. 그 중 TF-IDF와 심층신경망을 사용한 모델은 다른 전처리기나 다른 학습방식을 사용한 것보다 좋은 성능을 보임을 확인하였다.

변형된 DenseNet과 HPF를 이용한 카메라 모델 판별 알고리즘 (Camera Model Identification Using Modified DenseNet and HPF)

  • 이수현;김동현;이해연
    • 한국정보기술학회논문지
    • /
    • 제17권8호
    • /
    • pp.11-19
    • /
    • 2019
  • 영상 관련 범죄가 증가하고 고도화됨에 따라서 고수준의 디지털 포렌식 기술이 요구된다. 그러나 기존의 특징 기반 기술은 인간이 고안한 특징을 활용함으로서 새로운 기기 특징에 쉽게 대응하기 어렵고, 딥러닝 기반 기술은 정확도 향상이 요구된다. 본 논문에서는 딥러닝 모델 분야의 최신 기술인 DenseNet을 기반으로 카메라 모델 판별을 위한 딥러닝 모델을 제안한다. 카메라의 센서 특징을 획득하기 위해 HPF 특징 추출 필터를 적용하였고, 카메라 판별에 적합하도록 기존 DenseNet에서 계층 반복 수를 조정하였다. 또한 연산량을 줄이기 위한 Bottleneck layer와 압축 연산 처리를 제거하였다. 제안한 모델을 Dresden 데이터베이스를 사용하여 성능 분석을 하였고, 14개 카메라 모델에 대해 99.65%의 정확도를 달성하였다. 기존 연구들보다 높은 정확도를 달성하였으며 기존에 동일한 제조사에서 정확도가 낮아지는 단점을 극복하였다.

딥 러닝을 이용한 비디오 카메라 모델 판별 시스템 (Video Camera Model Identification System Using Deep Learning)

  • 김동현;이수현;이해연
    • 한국정보기술학회논문지
    • /
    • 제17권8호
    • /
    • pp.1-9
    • /
    • 2019
  • 현대 사회에서 영상 정보 통신 기술이 발전함에 따라서 영상 획득 및 대량 생산 기술도 급속히 발전하였지만 이를 이용한 범죄도 증가하여 범죄 예방을 위한 법의학 연구가 진행되고 있다. 영상 획득 장치에 대한 판별 기술은 많이 연구되었지만, 그 분야가 영상으로 한정되어 있다. 본 논문에서는 영상이 아닌 동영상에 대한 카메라 모델의 판별 기법을 제안한다. 기존의 영상을 학습한 모델을 사용하여 동영상의 프레임을 분석하였고, 동영상의 프레임 특성을 활용한 학습과 분석을 통하여 P 프레임을 활용한 모델의 우수성을 보였다. 이를 이용하여 다수결 기반 판별 알고리즘을 적용한 동영상에 대한 카메라 모델 판별 시스템을 제안하였다. 실험에서는 5개 비디오 카메라 모델을 이용하여 분석을 하였고, 각각의 프레임 판별에 대해 최대 96.18% 정확도를 얻었으며, 비디오 카메라 모델 판별 시스템은 각 카메라 모델에 대하여 100% 판별률을 달성하였다.

A pilot study of an automated personal identification process: Applying machine learning to panoramic radiographs

  • Ortiz, Adrielly Garcia;Soares, Gustavo Hermes;da Rosa, Gabriela Cauduro;Biazevic, Maria Gabriela Haye;Michel-Crosato, Edgard
    • Imaging Science in Dentistry
    • /
    • 제51권2호
    • /
    • pp.187-193
    • /
    • 2021
  • Purpose: This study aimed to assess the usefulness of machine learning and automation techniques to match pairs of panoramic radiographs for personal identification. Materials and Methods: Two hundred panoramic radiographs from 100 patients (50 males and 50 females) were randomly selected from a private radiological service database. Initially, 14 linear and angular measurements of the radiographs were made by an expert. Eight ratio indices derived from the original measurements were applied to a statistical algorithm to match radiographs from the same patients, simulating a semi-automated personal identification process. Subsequently, measurements were automatically generated using a deep neural network for image recognition, simulating a fully automated personal identification process. Results: Approximately 85% of the radiographs were correctly matched by the automated personal identification process. In a limited number of cases, the image recognition algorithm identified 2 potential matches for the same individual. No statistically significant differences were found between measurements performed by the expert on panoramic radiographs from the same patients. Conclusion: Personal identification might be performed with the aid of image recognition algorithms and machine learning techniques. This approach will likely facilitate the complex task of personal identification by performing an initial screening of radiographs and matching ante-mortem and post-mortem images from the same individuals.

사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구 (Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study)

  • 윤예빈;허진행;김예지;조혜진;윤용수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권4호
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

Multi-band Approach to Deep Learning-Based Artificial Stereo Extension

  • Jeon, Kwang Myung;Park, Su Yeon;Chun, Chan Jun;Park, Nam In;Kim, Hong Kook
    • ETRI Journal
    • /
    • 제39권3호
    • /
    • pp.398-405
    • /
    • 2017
  • In this paper, an artificial stereo extension method that creates stereophonic sound from a mono sound source is proposed. The proposed method first trains deep neural networks (DNNs) that model the nonlinear relationship between the dominant and residual signals of the stereo channel. In the training stage, the band-wise log spectral magnitude and unwrapped phase of both the dominant and residual signals are utilized to model the nonlinearities of each sub-band through deep architecture. From that point, stereo extension is conducted by estimating the residual signal that corresponds to the input mono channel signal with the trained DNN model in a sub-band domain. The performance of the proposed method was evaluated using a log spectral distortion (LSD) measure and multiple stimuli with a hidden reference and anchor (MUSHRA) test. The results showed that the proposed method provided a lower LSD and higher MUSHRA score than conventional methods that use hidden Markov models and DNN with full-band processing.

Impurity profiling and chemometric analysis of methamphetamine seizures in Korea

  • Shin, Dong Won;Ko, Beom Jun;Cheong, Jae Chul;Lee, Wonho;Kim, Suhkmann;Kim, Jin Young
    • 분석과학
    • /
    • 제33권2호
    • /
    • pp.98-107
    • /
    • 2020
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea. MA is produced by chemical synthesis, and the final target drug that is produced contains small amounts of the precursor chemicals, intermediates, and by-products. To identify and quantify these trace compounds in MA seizures, a practical and feasible approach for conducting chromatographic fingerprinting with a suite of traditional chemometric methods and recently introduced machine learning approaches was examined. This was achieved using gas chromatography (GC) coupled with a flame ionization detector (FID) and mass spectrometry (MS). Following appropriate examination of all the peaks in 71 samples, 166 impurities were selected as the characteristic components. Unsupervised (principal component analysis (PCA), hierarchical cluster analysis (HCA), and K-means clustering) and supervised (partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), support vector machines (SVM), and deep neural network (DNN) with Keras) chemometric techniques were employed for classifying the 71 MA seizures. The results of the PCA, HCA, K-means clustering, PLS-DA, OPLS-DA, SVM, and DNN methods for quality evaluation were in good agreement. However, the tested MA seizures possessed distinct features, such as chirality, cutting agents, and boiling points. The study indicated that the established qualitative and semi-quantitative methods will be practical and useful analytical tools for characterizing trace compounds in illicit MA seizures. Moreover, they will provide a statistical basis for identifying the synthesis route, sources of supply, trafficking routes, and connections between seizures, which will support drug law enforcement agencies in their effort to eliminate organized MA crime.