• Title/Summary/Keyword: deep learning, forensic

Search Result 13, Processing Time 0.025 seconds

CNN-Based Fake Image Identification with Improved Generalization (일반화 능력이 향상된 CNN 기반 위조 영상 식별)

  • Lee, Jeonghan;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1624-1631
    • /
    • 2021
  • With the continued development of image processing technology, we live in a time when it is difficult to visually discriminate processed (or tampered) images from real images. However, as the risk of fake images being misused for crime increases, the importance of image forensic science for identifying fake images is emerging. Currently, various deep learning-based identifiers have been studied, but there are still many problems to be used in real situations. Due to the inherent characteristics of deep learning that strongly relies on given training data, it is very vulnerable to evaluating data that has never been viewed. Therefore, we try to find a way to improve generalization ability of deep learning-based fake image identifiers. First, images with various contents were added to the training dataset to resolve the over-fitting problem that the identifier can only classify real and fake images with specific contents but fails for those with other contents. Next, color spaces other than RGB were exploited. That is, fake image identification was attempted on color spaces not considered when creating fake images, such as HSV and YCbCr. Finally, dropout, which is commonly used for generalization of neural networks, was used. Through experimental results, it has been confirmed that the color space conversion to HSV is the best solution and its combination with the approach of increasing the training dataset significantly can greatly improve the accuracy and generalization ability of deep learning-based identifiers in identifying fake images that have never been seen before.

A Deep Learning Approach for Identifying User Interest from Targeted Advertising

  • Kim, Wonkyung;Lee, Kukheon;Lee, Sangjin;Jeong, Doowon
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.245-257
    • /
    • 2022
  • In the Internet of Things (IoT) era, the types of devices used by one user are becoming more diverse and the number of devices is also increasing. However, a forensic investigator is restricted to exploit or collect all the user's devices; there are legal issues (e.g., privacy, jurisdiction) and technical issues (e.g., computing resources, the increase in storage capacity). Therefore, in the digital forensics field, it has been a challenge to acquire information that remains on the devices that could not be collected, by analyzing the seized devices. In this study, we focus on the fact that multiple devices share data through account synchronization of the online platform. We propose a novel way of identifying the user's interest through analyzing the remnants of targeted advertising which is provided based on the visited websites or search terms of logged-in users. We introduce a detailed methodology to pick out the targeted advertising from cache data and infer the user's interest using deep learning. In this process, an improved learning model considering the unique characteristics of advertisement is implemented. The experimental result demonstrates that the proposed method can effectively identify the user interest even though only one device is examined.

Deep Learning based HEVC Double Compression Detection (딥러닝 기술 기반 HEVC로 압축된 영상의 이중 압축 검출 기술)

  • Uddin, Kutub;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1134-1142
    • /
    • 2019
  • Detection of double compression is one of the most efficient ways of remarking the validity of videos. Many methods have been introduced to detect HEVC double compression with different coding parameters. However, HEVC double compression detection under the same coding environments is still a challenging task in video forensic. In this paper, we introduce a novel method based on the frame partitioning information in intra prediction mode for detecting double compression in with the same coding environments. We propose to extract statistical feature and Deep Convolution Neural Network (DCNN) feature from the difference of partitioning picture including Coding Unit (CU) and Transform Unit (TU) information. Finally, a softmax layer is integrated to perform the classification of the videos into single and double compression by combing the statistical and the DCNN features. Experimental results show the effectiveness of the statistical and the DCNN features with an average accuracy of 87.5% for WVGA and 84.1% for HD dataset.

Souce Code Identification Using Deep Neural Network (심층신경망을 이용한 소스 코드 원작자 식별)

  • Rhim, Jisu;Abuhmed, Tamer
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.9
    • /
    • pp.373-378
    • /
    • 2019
  • Since many programming sources are open online, problems with reckless plagiarism and copyrights are occurring. Among them, source codes produced by repeated authors may have unique fingerprints due to their programming characteristics. This paper identifies each author by learning from a Google Code Jam program source using deep neural network. In this case, the original creator's source is to be vectored using a pre-processing instrument such as predictive-based vector or frequency-based approach, TF-IDF, etc. and to identify the original program source by learning by using a deep neural network. In addition a language-independent learning system was constructed using a pre-processing machine and compared with other existing learning methods. Among them, models using TF-IDF and in-depth neural networks were found to perform better than those using other pre-processing or other learning methods.

Camera Model Identification Using Modified DenseNet and HPF (변형된 DenseNet과 HPF를 이용한 카메라 모델 판별 알고리즘)

  • Lee, Soo-Hyeon;Kim, Dong-Hyun;Lee, Hae-Yeoun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.8
    • /
    • pp.11-19
    • /
    • 2019
  • Against advanced image-related crimes, a high level of digital forensic methods is required. However, feature-based methods are difficult to respond to new device features by utilizing human-designed features, and deep learning-based methods should improve accuracy. This paper proposes a deep learning model to identify camera models based on DenseNet, the recent technology in the deep learning model field. To extract camera sensor features, a HPF feature extraction filter was applied. For camera model identification, we modified the number of hierarchical iterations and eliminated the Bottleneck layer and compression processing used to reduce computation. The proposed model was analyzed using the Dresden database and achieved an accuracy of 99.65% for 14 camera models. We achieved higher accuracy than previous studies and overcome their disadvantages with low accuracy for the same manufacturer.

Video Camera Model Identification System Using Deep Learning (딥 러닝을 이용한 비디오 카메라 모델 판별 시스템)

  • Kim, Dong-Hyun;Lee, Soo-Hyeon;Lee, Hae-Yeoun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.8
    • /
    • pp.1-9
    • /
    • 2019
  • With the development of imaging information communication technology in modern society, imaging acquisition and mass production technology have developed rapidly. However, crime rates using these technology are increased and forensic studies are conducted to prevent it. Identification techniques for image acquisition devices are studied a lot, but the field is limited to images. In this paper, camera model identification technique for video, not image is proposed. We analyzed video frames using the trained model with images. Through training and analysis by considering the frame characteristics of video, we showed the superiority of the model using the P frame. Then, we presented a video camera model identification system by applying a majority-based decision algorithm. In the experiment using 5 video camera models, we obtained maximum 96.18% accuracy for each frame identification and the proposed video camera model identification system achieved 100% identification rate for each camera model.

A pilot study of an automated personal identification process: Applying machine learning to panoramic radiographs

  • Ortiz, Adrielly Garcia;Soares, Gustavo Hermes;da Rosa, Gabriela Cauduro;Biazevic, Maria Gabriela Haye;Michel-Crosato, Edgard
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.187-193
    • /
    • 2021
  • Purpose: This study aimed to assess the usefulness of machine learning and automation techniques to match pairs of panoramic radiographs for personal identification. Materials and Methods: Two hundred panoramic radiographs from 100 patients (50 males and 50 females) were randomly selected from a private radiological service database. Initially, 14 linear and angular measurements of the radiographs were made by an expert. Eight ratio indices derived from the original measurements were applied to a statistical algorithm to match radiographs from the same patients, simulating a semi-automated personal identification process. Subsequently, measurements were automatically generated using a deep neural network for image recognition, simulating a fully automated personal identification process. Results: Approximately 85% of the radiographs were correctly matched by the automated personal identification process. In a limited number of cases, the image recognition algorithm identified 2 potential matches for the same individual. No statistically significant differences were found between measurements performed by the expert on panoramic radiographs from the same patients. Conclusion: Personal identification might be performed with the aid of image recognition algorithms and machine learning techniques. This approach will likely facilitate the complex task of personal identification by performing an initial screening of radiographs and matching ante-mortem and post-mortem images from the same individuals.

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

Multi-band Approach to Deep Learning-Based Artificial Stereo Extension

  • Jeon, Kwang Myung;Park, Su Yeon;Chun, Chan Jun;Park, Nam In;Kim, Hong Kook
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.398-405
    • /
    • 2017
  • In this paper, an artificial stereo extension method that creates stereophonic sound from a mono sound source is proposed. The proposed method first trains deep neural networks (DNNs) that model the nonlinear relationship between the dominant and residual signals of the stereo channel. In the training stage, the band-wise log spectral magnitude and unwrapped phase of both the dominant and residual signals are utilized to model the nonlinearities of each sub-band through deep architecture. From that point, stereo extension is conducted by estimating the residual signal that corresponds to the input mono channel signal with the trained DNN model in a sub-band domain. The performance of the proposed method was evaluated using a log spectral distortion (LSD) measure and multiple stimuli with a hidden reference and anchor (MUSHRA) test. The results showed that the proposed method provided a lower LSD and higher MUSHRA score than conventional methods that use hidden Markov models and DNN with full-band processing.

Impurity profiling and chemometric analysis of methamphetamine seizures in Korea

  • Shin, Dong Won;Ko, Beom Jun;Cheong, Jae Chul;Lee, Wonho;Kim, Suhkmann;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.98-107
    • /
    • 2020
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea. MA is produced by chemical synthesis, and the final target drug that is produced contains small amounts of the precursor chemicals, intermediates, and by-products. To identify and quantify these trace compounds in MA seizures, a practical and feasible approach for conducting chromatographic fingerprinting with a suite of traditional chemometric methods and recently introduced machine learning approaches was examined. This was achieved using gas chromatography (GC) coupled with a flame ionization detector (FID) and mass spectrometry (MS). Following appropriate examination of all the peaks in 71 samples, 166 impurities were selected as the characteristic components. Unsupervised (principal component analysis (PCA), hierarchical cluster analysis (HCA), and K-means clustering) and supervised (partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), support vector machines (SVM), and deep neural network (DNN) with Keras) chemometric techniques were employed for classifying the 71 MA seizures. The results of the PCA, HCA, K-means clustering, PLS-DA, OPLS-DA, SVM, and DNN methods for quality evaluation were in good agreement. However, the tested MA seizures possessed distinct features, such as chirality, cutting agents, and boiling points. The study indicated that the established qualitative and semi-quantitative methods will be practical and useful analytical tools for characterizing trace compounds in illicit MA seizures. Moreover, they will provide a statistical basis for identifying the synthesis route, sources of supply, trafficking routes, and connections between seizures, which will support drug law enforcement agencies in their effort to eliminate organized MA crime.