• Title/Summary/Keyword: deep heat

Search Result 369, Processing Time 0.022 seconds

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

THE EFFECTS OF PASTE TYPE CALCIUM SULFATE ON THE PERIODONTAL HEALING OF 3-WALL INTRABONY DEFECTS IN DOGS (성견 3면 골내낭에서 Paste형 Calcium Sulfate 가 치주조직 치유에 미치는 영향)

  • Hyun, Suk-Ju;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.429-455
    • /
    • 2002
  • There are numerous kind of materials and techniques to regenerate the periodontal tissue which has been lost due to destructive periodontal disease, including bone graft material. Many bone graft materials have been reported and among these materials, synthetic material has been developed fin the long time because of its sufficient supply economically. Calcium sulfate which was evaluated as including much calcium, has been used in the clinical field. In the dental field calcium sulfate has been used as bone graft material and Kim reported that improved bone formation and more amount of new attachment after grafting calcium sulfate. but, because calcium sulfate has the problem that it generates the heat in setting period and resolves fast, we need to evaluate the effect of the improved calcium sulfate on periodontal tissue. The present study evaluates the effect of paste type calcium sulfate on the epithelial migration, alveolar bone regeneration, cementum formation and gingival connective tissue attachment in intrabony defect in dogs. Four millimeter deep and four millimeter wide 3-wall defects were surgically created in the mesial or distal aspects of premolars or molars. the test group received paste-type calcium sulfate with a flap procedure and the control group underwent flap procedure only. Histologic analysis after 8 weeks of healing revealed the following results : 1. The length of epithelial growth(the distance from CEJ to the apical end of JE) was 0.52${\pm}$0.26mm in the control and 0.56${\pm}$0.25mm in the test group. there was no statistically significant difference between the two groups. 2. The length of connective tissue adhesion was 1.74${\pm}$1.06mm in the control and 1.28${\pm}$0.57mm in the test group. there was no statistically significant difference between the two groups. 3. The length of new bone was 2.01${\pm}$0.95mm in the control and 2.62${\pm}$0.81mm in the test group. there was no statistically significant difference between the two groups. 4. The length of new cementum was 1.86${\pm}$0.80mm in the control and 2.77${\pm}$ 0.86mm in the test group. there was a statistically significant difference between the two groups.(P<0.01) These results suggest that the use of paste type calcium sulfate in 3-wall intrabony defects has significant effect on new cementum formation , but doesn't have any significant effect on the prevention of junctional epithelium migration and new bone formation. Finally, the paste type calcium sulfate that is used in this study is suggested to be the material that can have a significant effect on the periodontal healing, if its biocompatibility is improved.

Preparation of EVA/Intumescent/Nano-Clay Composite with Flame Retardant Properties and Cross Laminated Timber (CLT) Application Technology (난연특성을 가지는 EVA/Intumescent/나노클레이 복합재료 제조 및 교호집성재(Cross Laminated Timber) 적용 기술)

  • Choi, Yo-Seok;Park, Ji-Won;Lee, Jung-Hun;Shin, Jae-Ho;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Recently, the importance of flame retardation treatment technology has been emphasized due to the increase in urban fire accidents and fire damage incidents caused by building exterior materials. Particularly, in the utilization of wood-based building materials, the flame retarding treatment technology is more importantly evaluated. An Intumescent system is one of the non-halogen flame retardant treatment technologies and is a system that realizes flame retardancy through foaming and carbonization layer formation. To apply the Intumescent system, composite material was prepared by using Ethylene vinyl acetate (EVA) as a matrix. To enhance the flame retardant properties of the Intumescent system, a nano-clay was applied together. Composite materials with Intumescent system and nano - clay technology were processed into sheet - like test specimens, and then a new structure of cross laminated timber with improved flame retardant properties was fabricated. In the evaluation of combustion characteristics of composite materials using Intumescent system, it was confirmed that the maximum heat emission was reduced efficiently. Depending on the structure attached to the surface, the CLT had two stages of combustion. Also, it was confirmed that the maximum calorific value decreased significantly during the deep burning process. These characteristics are expected to have a delayed combustion diffusion effect in the combustion process of CLT. In order to improve the performance, the flame retardation treatment technique for the surface veneer and the optimization technique of the application of the composite material are required. It is expected that it will be possible to develop a CLT structure with improved fire characteristics.

Effect of pore-water salinity on freezing rate in application of rapid artificial ground freezing to deep subsea tunnel: concentration of laboratory freezing chamber test (고수압 해저터널에 급속 인공동결공법 적용시 간극수의 염분 농도가 동결속도에 미치는 영향 평가: 실내 동결챔버시험 위주로)

  • Oh, Mintaek;Lee, Dongseop;Son, Young-Jin;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.401-412
    • /
    • 2016
  • It is extremely difficult to apply conventional grouting methods to subsea tunnelling construction in the high water pressure condition. In such a condition, the rapid artificial freezing method can be an alternative to grouting to form a watertight zone around freezing pipes. For a proper design of the artificial freezing method, the influence of salinity on the freezing process has to be considered. However, there are few domestic tunnel construction that adopted the artificial freezing method, and influential factors on the freezing of the soil are not clearly identified. In this paper, a series of laboratory experiments were performed to identify the physical characteristics of frozen soil. Thermal conductivity of the frozen and unfrozen soil samples was measured through the thermal sensor adopting transient hot-wire method. Moreover, a lab-scale freezing chamber was devised to simulate freezing process of silica sand with consideration of the salinity of pore-water. The temperature in the silica sand sample was measured during the freezing process to evaluate the effect of pore-water salinity on the frozen rate that is one of the key parameters in designing the artificial freezing method in subsea tunnelling. In case of unfrozen soil, the soil samples saturated with fresh water (salinity of 0%) and brine water (salinity of 3.5%) showed a similar value of thermal conductivity. However, the frozen soil sample saturated with brine water led to the thermal conductivity notably higher than that of fresh water, which corresponds to the fact that the freezing rate of brine water was greater than that of fresh water in the freezing chamber test.

Ore Minerals, Fluid Inclusions, and Isotopic(S.C.O) Compositions in the Diatreme-Hosted Nokdong As-Zn Deposit, Southeastern Korea: The Character and Evolution of the Hydrothermal Fluids (다이아튜림 내에 부존한 녹동 비소-아연광상의 광석광물, 유체포유물, 유황-탄소-산소 동위원소 : 광화용액의 특성과 진화)

  • Park, Ki-Hwa;Park, Hee-In;Eastoe, Christopher J.;Choi, Suck-Won
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.131-150
    • /
    • 1991
  • The Weolseong diatreme was temporally and spatially related to the intrusion of the Gadaeri granite, and was -mineralized by meteoric aqueous fluids. In the Nokdong As-Zn deposit, pyrite, aresenopyrite and sphalerite are the most abundant sulfide minerals. They are associated with minor amount of magnetite, pyrrhotite, chalcopyrite and cassiterite, and trace amounts of Pb-Sb-Bi-Ag sulphosalts. The AsZn ore probably occurred at about $350^{\circ}C$ according to fluid inclusion and compositional data estimated from the arsenic content of arsenopyrite and iron content of sphalerite intergrown with pyrrhotite + chalcopyrite + cubanite. Heating studies of fluid inclusions in quartz indicate a temperature range between 180 and $360^{\circ}C$, and freezing data indicate a salinity range from 0.8 to 4.1 eq.wt % NaCl. The coexisting assemblage pyrite + pyrrhotite + arsenopyrite suggests that $H_2S$ was the dominate reduced sulfur species, and defines fluid parameter thus: $10^{-34.5}$ < ${\alpha}_{S_2}$ < $10^{-33}$, $10^{-11}$ < $f_{S_2}$ < $10^{-8}$, -2.4 < ${\alpha}_{S_2}$ < -1.6 atm and pH= 5.2 (sericte stable) at $300^{\circ}C$. The sulfur isotope values ranged from 1.8 to 5.5% and indicate that the sulfur in the sulfides is of magmatic in origin. The carbon isotope values range from -7.8 to -11.6%, and the oxygen isotope values from the carbonates in mineralized wall rock range from 2 to 11.4%. The oxygen isotope compositions of water coexisting with calcite require an input of meteoric water. The geochemical data indicate that the ore-forming fluid probably was generated by a variety of mechanisms, including deep circulation of meteoric water driven by magmatic heat, with possible input of magniatic water and ore component.

  • PDF

Review on the Triassic Post-collisional Magmatism in the Qinling Collision Belt (친링 충돌대의 트라이아스기 충돌 후 화성작용에 대한 리뷰)

  • Oh, Chang Whan;Lee, Byung Choon;Yi, Sang-Bong;Zhang, Cheng Li
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.293-309
    • /
    • 2014
  • The Qinling-Dabie-Sulu-Hongseong-Odesan collision belt was formed by the collision between the North China and South China Cratons during late Permian to Triassic. During the collision, Triassic post-collision igneous rocks regionally intruded in the Qinling and the Hongseong-Odesan collision belts which represent the western and eastern ends of the collision belt, respectively. However, no and minor Triassic post-collision igneous activities occur in the Dabie and Sulu belts respectively. The peak metamorphic pressure conditions along the Qinling-Dabie-Sulu-Hongseong-Odesan belt indicate that the slab break-off occurred at the depth of ultra-high pressure (UHP) metamorphic condition in the Dabie and Sulu belts and at the depths of high pressure (HP) or high pressure granulite (HPG) metamorphic condition in the Qinling and Hongseong-Odesan belts. In the Dabie and Sulu belts the heat supply from the asthenospheric mantle through the gab formed by slab break-off could not cause an extensive melting in the lower continental crust and lithospheric mantle directly below it due to the very deep depth of slab break-off. On the other hand, in the Qinling and Hongseong-Odesan belts, shallower slab break-off caused the emplacement of regional post collision igneous rocks. The post-collision igneous rocks occur in the area to the north of the Mianlu Suture zone in the western Qinling belt and crop out continuously eastwards into the areas to the north of the Shangdan Suture zone in the eastern Qinling belt through the areas within the South Qinling block. This distribution pattern of post collision igneous rocks suggests that the Triassic collision belt in the Mianleu Suture zone may be extended into the Shangdan Suture zone after passing through the South Qinling block instead into the boundary between the South Qinling block and the South China Craton.

Current Status of the Research on the Postharvest Technology of Melon(Cucumis melo L.) (멜론(Cucumis melo L.) 수확 후 관리기술 최근 연구 동향)

  • Oh, Su-Hwan;Bae, Ro-Na;Lee, Seung-Koo
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.442-458
    • /
    • 2011
  • Among Cucubitaceae, melon (Cucumis melo) is one of the most diversified fruits, with various forms, sizes, pulps, and peel colors, In addition, it is a commercially important crop because of its high sweetness, deep flavor, and abundant juice. In the species, there are both climacteric and non-climacteric melons depending on the respiration and ethylene production patterns after harvest. Ethylene is also considered a crucial hormone for determining sex expression, Phytohormones other than ethylene interact and regulate ripening, There are some indices that can be used to evaluate the optimum harvest maturity. The harvest time can be estimated after the pollination time, which is the most commonly used method of determining the harvest maturity of the fruit. Besides the physiological aspects, the biochemical alterations, including those of sweetness, firmness, flavor, color, and rind, contribute to the overall fruit quality. These changes can be categorized based on the ethylene-dependent and ethylene-independent phenomena due to the ethylene-suppressed transgenic melon. After harvest, the fruits are precooled to $10^{\circ}C$ to reduce the field heat, after which they are sized and packed. The fruits can be treated with hot water ($60^{\circ}C$ for 60 min) to prevent the softening of the enzyme activity and microorganisms, and with calcium to maintain their firmness. 1-methylenecyclopropene (1-MCP) treatment also maintains their storability by inhibiting respiration and ethylene production. The shelf life of melon is very short even under cold storage, like other cucurbits, and it is prone to obtaining chilling injury under $10^{\circ}C$. In South Korea, low-temperature ($10^{\circ}C$) storage is known to be the best storage condition for the fruit. For long-time transport, CA storage is a good method of maintaining the quality of the fruit by reducing the respiration and ethylene. For fresh-cut processing, washing with a sanitizing agent and packing with plastic-film processing are needed, and low-temperature storage is necessary. The consumer need and demand for fresh-cut melon are growing, but preserving the quality of fresh-cut melon is more challenging than preserving the quality of the whole fruit.

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.

Migration of the Dokdo Cold Eddy in the East Sea (동해 독도 냉수성 소용돌이의 이동 특성)

  • KIM, JAEMIN;CHOI, BYOUNG-JU;LEE, SANG-HO;BYUN, DO-SEONG;KANG, BOONSOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.351-373
    • /
    • 2019
  • The cold eddies around the Ulleung Basin in the East Sea were identified from satellite altimeter sea level data using the Winding-Angle method from 1993 to 2015. Among the cold eddies, the Dokdo Cold Eddies (DCEs), which were formed at the first meandering trough of the East Korea Warm Current (EKWC) and were pinched off to the southwest from the eastward flow, were classified and their migration patterns were analyzed. The vertical structures of water temperature, salinity, and flow velocity near the DCE center were also examined using numerical simulation and observation data provided by the Hybrid Coordinate Ocean Model and the National Institute of Fisheries Science, respectively. A total of 112 DCEs were generated for 23 years. Of these, 39 DCEs migrated westward and arrived off the east coast of Korea. The average travel distance was 250.9 km, the average lifespan was 93 days, and the average travel speed was 3.5 cm/s. The other 73 DCEs had moved to the east or had hovered around the generated location until they disappeared. At 50-100 m depth under the DCE, water temperature and salinity (T < $5^{\circ}C$, S < 34.1) were lower than those of ambient water and isotherms made a dome shape. Current faster than 10 cm/s circulates counterclockwise from the surface to 300 m depth at 38 km away from the center of DCE. After the EKWC separates from the coast, it flows eastward and starts to meander near Ulleungdo. The first trough of the meander in the east of Ulleungdo is pushed deep into the southwest and forms a cold eddy (DCE), which is shed from the meander in the south of Ulleungdo. While a DCE moves westward, it circumvents the Ulleung Warm Eddy (UWE) clockwise and follows U shape path toward the east coast of Korea. When the DCE arrives near the coast, the EKWC separates from the coast at the south of DCE and circumvents the DCE. As the DCE near the coast weakens and extinguishes about 30 days later after the arrival, the EKWC flows northward along the coast recovering its original path. The DCE steadily transports heat and salt from the north to the south, which helps to form a cold water region in the southwest of the Ulleung Basin and brings positive vorticity to change the separation latitude and path of the EKWC. Some of the DCEs moving to the west were merged into a coastal cold eddy to form a wide cold water region in the west of Ulleung Basin and to create a elongated anticlockwise circulation, which separated the UWE in the north from the EKWC in the south.