• Title/Summary/Keyword: deep convolution neural network

Search Result 267, Processing Time 0.027 seconds

Classification of Gripping Movement in Daily Life Using EMG-based Spider Chart and Deep Learning (근전도 기반의 Spider Chart와 딥러닝을 활용한 일상생활 잡기 손동작 분류)

  • Lee, Seong Mun;Pi, Sheung Hoon;Han, Seung Ho;Jo, Yong Un;Oh, Do Chang
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • In this paper, we propose a pre-processing method that converts to Spider Chart image data for classification of gripping movement using EMG (electromyography) sensors and Convolution Neural Networks (CNN) deep learning. First, raw data for six hand gestures are extracted from five test subjects using an 8-channel armband and converted into Spider Chart data of octagonal shapes, which are divided into several sliding windows and are learned. In classifying six hand gestures, the classification performance is compared with the proposed pre-processing method and the existing methods. Deep learning was performed on the dataset by dividing 70% of the total into training, 15% as testing, and 15% as validation. For system performance evaluation, five cross-validations were applied by dividing 80% of the entire dataset by training and 20% by testing. The proposed method generates 97% and 94.54% in cross-validation and general tests, respectively, using the Spider Chart preprocessing, which was better results than the conventional methods.

Medical Image Denoising using Wavelet Transform-Based CNN Model

  • Seoyun Jang;Dong Hoon Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.21-34
    • /
    • 2024
  • In medical images such as MRI(Magnetic Resonance Imaging) and CT(Computed Tomography) images, noise removal has a significant impact on the performance of medical imaging systems. Recently, the introduction of deep learning in image processing technology has improved the performance of noise removal methods. However, there is a limit to removing only noise while preserving details in the image domain. In this paper, we propose a wavelet transform-based CNN(Convolutional Neural Network) model, namely the WT-DnCNN(Wavelet Transform-Denoising Convolutional Neural Network) model, to improve noise removal performance. This model first removes noise by dividing the noisy image into frequency bands using wavelet transform, and then applies the existing DnCNN model to the corresponding frequency bands to finally remove noise. In order to evaluate the performance of the WT-DnCNN model proposed in this paper, experiments were conducted on MRI and CT images damaged by various noises, namely Gaussian noise, Poisson noise, and speckle noise. The performance experiment results show that the WT-DnCNN model is superior to the traditional filter, i.e., the BM3D(Block-Matching and 3D Filtering) filter, as well as the existing deep learning models, DnCNN and CDAE(Convolution Denoising AutoEncoder) model in qualitative comparison, and in quantitative comparison, the PSNR(Peak Signal-to-Noise Ratio) and SSIM(Structural Similarity Index Measure) values were 36~43 and 0.93~0.98 for MRI images and 38~43 and 0.95~0.98 for CT images, respectively. In addition, in the comparison of the execution speed of the models, the DnCNN model was much less than the BM3D model, but it took a long time due to the addition of the wavelet transform in the comparison with the DnCNN model.

A Network Intrusion Security Detection Method Using BiLSTM-CNN in Big Data Environment

  • Hong Wang
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.688-701
    • /
    • 2023
  • The conventional methods of network intrusion detection system (NIDS) cannot measure the trend of intrusiondetection targets effectively, which lead to low detection accuracy. In this study, a NIDS method which based on a deep neural network in a big-data environment is proposed. Firstly, the entire framework of the NIDS model is constructed in two stages. Feature reduction and anomaly probability output are used at the core of the two stages. Subsequently, a convolutional neural network, which encompasses a down sampling layer and a characteristic extractor consist of a convolution layer, the correlation of inputs is realized by introducing bidirectional long short-term memory. Finally, after the convolution layer, a pooling layer is added to sample the required features according to different sampling rules, which promotes the overall performance of the NIDS model. The proposed NIDS method and three other methods are compared, and it is broken down under the conditions of the two databases through simulation experiments. The results demonstrate that the proposed model is superior to the other three methods of NIDS in two databases, in terms of precision, accuracy, F1- score, and recall, which are 91.64%, 93.35%, 92.25%, and 91.87%, respectively. The proposed algorithm is significant for improving the accuracy of NIDS.

Image Classification of Damaged Bolts using Convolution Neural Networks (합성곱 신경망을 이용한 손상된 볼트의 이미지 분류)

  • Lee, Soo-Byoung;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.109-115
    • /
    • 2022
  • The CNN (Convolution Neural Network) algorithm which combines a deep learning technique, and a computer vision technology, makes image classification feasible with the high-performance computing system. In this thesis, the CNN algorithm is applied to the classification problem, by using a typical deep learning framework of TensorFlow and machine learning techniques. The data set required for supervised learning is generated with the same type of bolts. some of which have undamaged threads, but others have damaged threads. The learning model with less quantity data showed good classification performance on detecting damage in a bolt image. Additionally, the model performance is reviewed by altering the quantity of convolution layers, or applying selectively the over and under fitting alleviation algorithm.

SIFT Image Feature Extraction based on Deep Learning (딥 러닝 기반의 SIFT 이미지 특징 추출)

  • Lee, Jae-Eun;Moon, Won-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.234-242
    • /
    • 2019
  • In this paper, we propose a deep neural network which extracts SIFT feature points by determining whether the center pixel of a cropped image is a SIFT feature point. The data set of this network consists of a DIV2K dataset cut into $33{\times}33$ size and uses RGB image unlike SIFT which uses black and white image. The ground truth consists of the RobHess SIFT features extracted by setting the octave (scale) to 0, the sigma to 1.6, and the intervals to 3. Based on the VGG-16, we construct an increasingly deep network of 13 to 23 and 33 convolution layers, and experiment with changing the method of increasing the image scale. The result of using the sigmoid function as the activation function of the output layer is compared with the result using the softmax function. Experimental results show that the proposed network not only has more than 99% extraction accuracy but also has high extraction repeatability for distorted images.

A Construction of Web Application Platform for Detection and Identification of Various Diseases in Tomato Plants Using a Deep Learning Algorithm (딥러닝 알고리즘을 이용한 토마토에서 발생하는 여러가지 병해충의 탐지와 식별에 대한 웹응용 플렛폼의 구축)

  • Na, Myung Hwan;Cho, Wanhyun;Kim, SangKyoon
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.4
    • /
    • pp.581-596
    • /
    • 2020
  • Purpose: purpose of this study was to propose the web application platform which can be to detect and discriminate various diseases and pest of tomato plant based on the large amount of disease image data observed in the facility or the open field. Methods: The deep learning algorithms uesed at the web applivation platform are consisted as the combining form of Faster R-CNN with the pre-trained convolution neural network (CNN) models such as SSD_mobilenet v1, Inception v2, Resnet50 and Resnet101 models. To evaluate the superiority of the newly proposed web application platform, we collected 850 images of four diseases such as Bacterial cankers, Late blight, Leaf miners, and Powdery mildew that occur the most frequent in tomato plants. Of these, 750 were used to learn the algorithm, and the remaining 100 images were used to evaluate the algorithm. Results: From the experiments, the deep learning algorithm combining Faster R-CNN with SSD_mobilnet v1, Inception v2, Resnet50, and Restnet101 showed detection accuracy of 31.0%, 87.7%, 84.4%, and 90.8% respectively. Finally, we constructed a web application platform that can detect and discriminate various tomato deseases using best deep learning algorithm. If farmers uploaded image captured by their digital cameras such as smart phone camera or DSLR (Digital Single Lens Reflex) camera, then they can receive an information for detection, identification and disease control about captured tomato disease through the proposed web application platform. Conclusion: Incheon Port needs to act actively paying.

Small Marker Detection with Attention Model in Robotic Applications (로봇시스템에서 작은 마커 인식을 하기 위한 사물 감지 어텐션 모델)

  • Kim, Minjae;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • As robots are considered one of the mainstream digital transformations, robots with machine vision becomes a main area of study providing the ability to check what robots watch and make decisions based on it. However, it is difficult to find a small object in the image mainly due to the flaw of the most of visual recognition networks. Because visual recognition networks are mostly convolution neural network which usually consider local features. So, we make a model considering not only local feature, but also global feature. In this paper, we propose a detection method of a small marker on the object using deep learning and an algorithm that considers global features by combining Transformer's self-attention technique with a convolutional neural network. We suggest a self-attention model with new definition of Query, Key and Value for model to learn global feature and simplified equation by getting rid of position vector and classification token which cause the model to be heavy and slow. Finally, we show that our model achieves higher mAP than state of the art model YOLOr.

Real-Time Fire Detection Method Using YOLOv8 (YOLOv8을 이용한 실시간 화재 검출 방법)

  • Tae Hee Lee;Chun-Su Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.77-80
    • /
    • 2023
  • Since fires in uncontrolled environments pose serious risks to society and individuals, many researchers have been investigating technologies for early detection of fires that occur in everyday life. Recently, with the development of deep learning vision technology, research on fire detection models using neural network backbones such as Transformer and Convolution Natural Network has been actively conducted. Vision-based fire detection systems can solve many problems with physical sensor-based fire detection systems. This paper proposes a fire detection method using the latest YOLOv8, which improves the existing fire detection method. The proposed method develops a system that detects sparks and smoke from input images by training the Yolov8 model using a universal fire detection dataset. We also demonstrate the superiority of the proposed method through experiments by comparing it with existing methods.

  • PDF

A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network (이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구)

  • Yoo, JiHoon;Min, Byeongjun;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2021
  • As damages to individuals, private sectors, and businesses increase due to newly occurring cyber attacks, the underlying network security problem has emerged as a major problem in computer systems. Therefore, NIDS using machine learning and deep learning is being studied to improve the limitations that occur in the existing Network Intrusion Detection System. In this study, a deep learning-based NIDS model study is conducted using the Convolution Neural Network (CNN) algorithm. For the image classification-based CNN algorithm learning, a discrete algorithm for continuity variables was added in the preprocessing stage used previously, and the predicted variables were expressed in a linear relationship and converted into easy-to-interpret data. Finally, the network packet processed through the above process is mapped to a square matrix structure and converted into a pixel image. For the performance evaluation of the proposed model, NSL-KDD, a representative network packet data, was used, and accuracy, precision, recall, and f1-score were used as performance indicators. As a result of the experiment, the proposed model showed the highest performance with an accuracy of 85%, and the harmonic mean (F1-Score) of the R2L class with a small number of training samples was 71%, showing very good performance compared to other models.

Accuracy Analysis and Comparison in Limited CNN using RGB-csb (RGB-csb를 활용한 제한된 CNN에서의 정확도 분석 및 비교)

  • Kong, Jun-Bea;Jang, Min-Seok;Nam, Kwang-Woo;Lee, Yon-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.133-138
    • /
    • 2020
  • This paper introduces a method for improving accuracy using the first convolution layer, which is not used in most modified CNN(: Convolution Neural Networks). In CNN, such as GoogLeNet and DenseNet, the first convolution layer uses only the traditional methods(3×3 convolutional computation, batch normalization, and activation functions), replacing this with RGB-csb. In addition to the results of preceding studies that can improve accuracy by applying RGB values to feature maps, the accuracy is compared with existing CNN using a limited number of images. The method proposed in this paper shows that the smaller the number of images, the greater the learning accuracy deviation, the more unstable, but the higher the accuracy on average compared to the existing CNN. As the number of images increases, the difference in accuracy between the existing CNN and the proposed method decreases, and the proposed method does not seem to have a significant effect.