• 제목/요약/키워드: deep convolution neural network

검색결과 267건 처리시간 0.034초

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

Deep Learning을 위한 GPGPU 기반 Convolution 가속기 구현 (An Implementation of a Convolutional Accelerator based on a GPGPU for a Deep Learning)

  • 전희경;이광엽;김치용
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.303-306
    • /
    • 2016
  • 본 논문에서는 GPGPU를 활용하여 Convolutional neural network의 가속화 방법을 제안한다. Convolutional neural network는 이미지의 특징 값을 학습하여 분류하는 neural network의 일종으로 대량의 데이터를 학습해야하는 영상 처리에 적합하다. 기존의 Convolutional neural network의 convolution layer는 다수의 곱셈 연산을 필요로 하여 임베디드 환경에서 실시간으로 동작하기에 어려움이 있다. 본 논문에서는 이러한 단점을 해결하기 위하여 winograd convolution 연산을 통하여 곱셈 연산을 줄이고 GPGPU의 SIMT 구조를 활용하여 convolution 연산을 병렬 처리한다. 실험은 ModelSim, TestDrive를 사용하여 진행하였고 실험 결과 기존의 convolution 연산보다 처리 시간이 약 17% 개선되었다.

신경망과 전이학습 기반 표면 결함 분류에 관한 연구 (A Study on the Classification of Surface Defect Based on Deep Convolution Network and Transfer-learning)

  • 김성주;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, a method for improving the defect classification performance in low contrast, ununiformity and featureless steel plate surfaces has been studied based on deep convolution neural network and transfer-learning neural network. The steel plate surface images have low contrast, ununiformity, and featureless, so that the contrast between defect and defect-free regions are not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. A classifier based on a deep convolution neural network is constructed to extract features automatically for effective classification of images with these characteristics. As results of the experiment, AlexNet-based transfer-learning classifier showed excellent classification performance of 99.43% with less than 160 seconds of training time. The proposed classification system showed excellent classification performance for low contrast, ununiformity, and featureless surface images.

A Video Expression Recognition Method Based on Multi-mode Convolution Neural Network and Multiplicative Feature Fusion

  • Ren, Qun
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.556-570
    • /
    • 2021
  • The existing video expression recognition methods mainly focus on the spatial feature extraction of video expression images, but tend to ignore the dynamic features of video sequences. To solve this problem, a multi-mode convolution neural network method is proposed to effectively improve the performance of facial expression recognition in video. Firstly, OpenFace 2.0 is used to detect face images in video, and two deep convolution neural networks are used to extract spatiotemporal expression features. Furthermore, spatial convolution neural network is used to extract the spatial information features of each static expression image, and the dynamic information feature is extracted from the optical flow information of multiple expression images based on temporal convolution neural network. Then, the spatiotemporal features learned by the two deep convolution neural networks are fused by multiplication. Finally, the fused features are input into support vector machine to realize the facial expression classification. Experimental results show that the recognition accuracy of the proposed method can reach 64.57% and 60.89%, respectively on RML and Baum-ls datasets. It is better than that of other contrast methods.

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

Layout Optimization Method of Railway Transportation Route Based on Deep Convolution Neural Network

  • Cong, Qiao;Qifeng, Gao;Huayan, Xing
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.46-54
    • /
    • 2023
  • To improve the railway transportation capacity and maximize the benefits of railway transportation, a method for layout optimization of railway transportation route based on deep convolution neural network is proposed in this study. Considering the transportation cost of railway transportation and other factors, the layout model of railway transportation route is constructed. Based on improved ant colony algorithm, the layout model of railway transportation route was optimized, and multiple candidate railway transportation routes were output. Taking into account external information such as regional information, weather conditions and actual information of railway transportation routes, optimization of the candidate railway transportation routes obtained by the improved ant colony algorithm was performed based on deep convolution neural network, and the optimal railway transportation routes were output, and finally layout optimization of railway transportation routes was realized. The experimental results show that the proposed method can obtain the optimal railway transportation route, the shortest transportation length, and the least transportation time, maximizing the interests of railway transportation enterprises.

소 부류 객체 분류를 위한 CNN기반 학습망 설계 (Training Network Design Based on Convolution Neural Network for Object Classification in few class problem)

  • 임수창;김승현;김연호;김도연
    • 한국정보통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.144-150
    • /
    • 2017
  • 최근 데이터의 지능적 처리 및 정확도 향상을 위해 딥러닝 기술이 응용되고 있다. 이 기술은 다층의 데이터 처리 레이어들로 구성된 계산 모델을 통해 이루어지는데, 이 모델은 여러 수준의 추상화를 거쳐 데이터의 표현을 학습한다. 딥러닝의 한 부류인 컨볼루션 신경망은 인간 행동 추정, 얼굴 인식, 이미지 분류, 음성 인식 같은 연구 분야에서 많이 활용되고 있다. 이미지 분류에 좋은 성능을 보여주는 컨볼루션 신경망은 깊은 학습망과 많은 부류를 이용하면 효과적으로 분류율을 높일수 있지만, 적은 부류의 데이터를 사용할 경우, 과적합 문제가 발생할 확률이 높아진다. 따라서 본 논문에서는 컨볼루션 신경망기반의 소부류의 분류을 위한 학습망을 제작하여 자체적으로 구축한 이미지 DB를 학습시키고, 객체를 분류하는 연구를 실험 하였으며, 1000개의 부류를 분류하기 위해 제작된 기존 공개된 망들과 비교 실험을 통해 기존 망보다 평균 7.06%이상의 상승된 분류율을 보여주었다.

A Deep Learning Model for Predicting User Personality Using Social Media Profile Images

  • Kanchana, T.S.;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.265-271
    • /
    • 2022
  • Social media is a form of communication based on the internet to share information through content and images. Their choice of profile images and type of image they post can be closely connected to their personality. The user posted images are designated as personality traits. The objective of this study is to predict five factor model personality dimensions from profile images by using deep learning and neural networks. Developed a deep learning framework-based neural network for personality prediction. The personality types of the Big Five Factor model can be quantified from user profile images. To measure the effectiveness, proposed two models using convolution Neural Networks to classify each personality of the user. Done performance analysis among two different models for efficiently predict personality traits from profile image. It was found that VGG-69 CNN models are best performing models for producing the classification accuracy of 91% to predict user personality traits.

Video Quality Assessment based on Deep Neural Network

  • Zhiming Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2053-2067
    • /
    • 2023
  • This paper proposes two video quality assessment methods based on deep neural network. (i)The first method uses the IQF-CNN (convolution neural network based on image quality features) to build image quality assessment method. The LIVE image database is used to test this method, the experiment show that it is effective. Therefore, this method is extended to the video quality assessment. At first every image frame of video is predicted, next the relationship between different image frames are analyzed by the hysteresis function and different window function to improve the accuracy of video quality assessment. (ii)The second method proposes a video quality assessment method based on convolution neural network (CNN) and gated circular unit network (GRU). First, the spatial features of video frames are extracted using CNN network, next the temporal features of the video frame using GRU network. Finally the extracted temporal and spatial features are analyzed by full connection layer of CNN network to obtain the video quality assessment score. All the above proposed methods are verified on the video databases, and compared with other methods.

딥러닝 합성곱 신경망을 이용한 효율적인 홍채인식 (Efficient Iris Recognition using Deep-Learning Convolution Neural Network)

  • 최광미;정유정
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.521-526
    • /
    • 2020
  • 본 논문은 홍채영상의 이동불변의 특징값 을추출에 탁월한 고차 국소 자동 상관함수를 적용하여 25개의 특징 값을 입력 값으로 적용한 일반적인 HOLP 신경망에 특징 값 25개의 평균값을 추가한 개선된 HOLP 신경망을 구현하여 인식률을 확인하여 보았다. 종류가 상이한 딥러닝 구조들과 비교하였을 때 음성과 영상분야에서 탁월한 성능을 보이는 Back-Propagation 신경망과 특징 추출기와 분류기를 통합한 합성 곱 신경망을 활용하여 홍채인식의 인식률을 비교하여 보았다.