• Title/Summary/Keyword: deep Q learning

Search Result 86, Processing Time 0.023 seconds

Development of Interior Self-driving Service Robot Using Embedded Board Based on Reinforcement Learning (강화학습 기반 임베디드 보드를 활용한 실내자율 주행 서비스 로봇 개발)

  • Oh, Hyeon-Tack;Baek, Ji-Hoon;Lee, Seung-Jin;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.537-540
    • /
    • 2018
  • 본 논문은 Jetson_TX2(임베디드 보드)의 ROS(Robot Operating System)기반으로 맵 지도를 작성하고, SLAM 및 DQN(Deep Q-Network)을 이용한 목적지까지의 이동명령(목표 선속도, 목표 각속도)을 자이로센서로 측정한 현재 각속도를 이용하여 Cortex-M3의 기반의 MCU(Micro Controllor Unit)에 하달하여 엔코더(encoder) 모터에서 측정한 현재 선속도와 자이로센서에서 측정한 각속도 값을 이용하여 PID제어를 통한 실내 자율주행 서비스 로봇.

Predictions of dam inflow on Han-river basin using LSTM (LSTM을 이용한 한강유역 댐유입량 예측)

  • Kim, Jongho;Tran, Trung Duc
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.319-319
    • /
    • 2020
  • 최근 데이터 과학의 획기적인 발전 덕분에 딥러닝 (Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 사용하여 댐 유입량을 예측하였다. 구체적인 내용으로, (1) LSTM에 필요한 입력 데이터를 효율적으로 사전 처리하는 방법, (2) LSTM의 하이퍼 매개변수를 결정하는 방법 및 (3) 다양한 손실 함수(Loss function)를 선택하고 그 영향을 평가하는 방법 등을 다루었다. 제안된 LSTM 모델은 강우량(R), 댐유입량(Q) 기온(T), 기저유량(BF) 등을 포함한 다양한 입력 변수들의 함수로 가정하였으며, CCF(Cross Correlations), ACF(Autocorrelations) 및 PACF(Partial Autocorrelations) 등의 기법을 사용하여 입력 변수를 결정하였다. 다양한 sequence length를 갖는 (즉 t, t-1, … t-n의 시간 지연을 갖는) 입력 변수를 적용하여 데이터 학습에 최적의 시퀀스 길이를 결정하였다. LSTM 네트워크 모델을 적용하여 2014년부터 2020년까지 한강 유역 9개의 댐 유입량을 추정하였다. 본 연구로부터 댐 유입량을 예측하는 것은 홍수 및 가뭄 통제를 위한 필수 요건들 중 하나이며 수자원 계획 및 관리에 도움이 될 것이다.

  • PDF

Design of weighted federated learning framework based on local model validation

  • Kim, Jung-Jun;Kang, Jeon Seong;Chung, Hyun-Joon;Park, Byung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.13-18
    • /
    • 2022
  • In this paper, we proposed VW-FedAVG(Validation based Weighted FedAVG) which updates the global model by weighting according to performance verification from the models of each device participating in the training. The first method is designed to validate each local client model through validation dataset before updating the global model with a server side validation structure. The second is a client-side validation structure, which is designed in such a way that the validation data set is evenly distributed to each client and the global model is after validation. MNIST, CIFAR-10 is used, and the IID, Non-IID distribution for image classification obtained higher accuracy than previous studies.

CAB: Classifying Arrhythmias based on Imbalanced Sensor Data

  • Wang, Yilin;Sun, Le;Subramani, Sudha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2304-2320
    • /
    • 2021
  • Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.

Development of Reinforcement Learning-Based Network Attack Simulation Using the MITRE ATT&CK Framework (강화학습을 활용한 MITRE ATT&CK 기반 네트워크 공격 시뮬레이션 개발)

  • Bum-Sok Kim;Jung-Hyun Kim;Ki-Jong Koo;Min-Suk Kim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.1117-1120
    • /
    • 2024
  • 본 논문에서는 강화학습을 활용하여 MITRE ATT&CK 프레임워크를 기반으로 한 사이버 공방시뮬레이션 환경을 개발하였다. 본 논문의 목적은 실제와 유사한 네트워크 환경에서 방어자의 존재여부가 공격 시퀀스의 복잡성과 학습 효율성에 미치는 영향을 분석하는 것이다. 본 논문에서 개발된 방어 전략은 공격 테크닉의 사전 및 사후 조건을 기반으로 하여 공격의 조건 및 결과와 반대되는 효과를 생성하였다. 이를 통해 공격자 및 방어자 간의 상호작용을 실시간으로 동기화하고, 네트워크 보안의 동적인 적응을 가능하게 한다. 이를 위해 Deep Q-Network (DQN), Proximal Policy Optimization (PPO), 그리고 Soft Actor-Critic (SAC) 등 다양한 강화학습 알고리즘을 사용하였다. 실험결과, 방어자가 없는 시나리오에서는 알고리즘들이 간단한 시퀀스로 빠르게 수렴하는 경향을 보였다. 이와 달리, 방어자가 포함된 시나리오에서는 DQN 과 PPO 가 반복적 행동으로, SAC 는 보다 다양한 행동 패턴으로 최대 스텝 수에 이르렀다. 이러한 결과는 방어자의 존재가 사이버 공격 전략의 복잡성을 크게 증가시키며, 강화학습 기반의 사이버 보안 전략 개발에 중요한 역할을 한다.

Interface Establishment between Reinforcement Learning Algorithm and External Analysis Program for AI-based Automation of Bridge Design Process (AI기반 교량설계 프로세스 자동화를 위한 강화학습 알고리즘과 외부 해석프로그램 간 인터페이스 구축)

  • Kim, Minsu;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.403-408
    • /
    • 2021
  • Currently, in the design process of civil structures such as bridges, it is common to make final products by repeating the process of redesigning, if the initial design is found to not meet the standards after a structural review. This iterative process extends the design time, and causes inefficient consumption of engineering manpower, which should be put into higher-level design, on simple repetitive mechanical work. This problem can be resolved by automating the design process, but the external analysis program used in the design process has been the biggest obstacle to such automation. In this study, we constructed an AI-based automation system for the bridge design process, including an interface that could control both a reinforcement learning algorithm, and an external analysis program, to replace the repetitive tasks in the current design process. The prototype of the system built in this study was developed for a 2-span RC Rahmen bridge, which is one of the simplest bridge systems. In the future, it is expected that the developed interface system can be utilized as a basic technology for linking the latest AI with other types of bridge designs.