Predictions of dam inflow on Han-river basin using LSTM

LSTM을 이용한 한강유역 댐유입량 예측

  • 김종호 (울산대학교 공과대학 건설환경공학부) ;
  • 쩐득충 (울산대학교 공과대학 건설환경공학부)
  • Published : 2020.06.24

Abstract

최근 데이터 과학의 획기적인 발전 덕분에 딥러닝 (Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 사용하여 댐 유입량을 예측하였다. 구체적인 내용으로, (1) LSTM에 필요한 입력 데이터를 효율적으로 사전 처리하는 방법, (2) LSTM의 하이퍼 매개변수를 결정하는 방법 및 (3) 다양한 손실 함수(Loss function)를 선택하고 그 영향을 평가하는 방법 등을 다루었다. 제안된 LSTM 모델은 강우량(R), 댐유입량(Q) 기온(T), 기저유량(BF) 등을 포함한 다양한 입력 변수들의 함수로 가정하였으며, CCF(Cross Correlations), ACF(Autocorrelations) 및 PACF(Partial Autocorrelations) 등의 기법을 사용하여 입력 변수를 결정하였다. 다양한 sequence length를 갖는 (즉 t, t-1, … t-n의 시간 지연을 갖는) 입력 변수를 적용하여 데이터 학습에 최적의 시퀀스 길이를 결정하였다. LSTM 네트워크 모델을 적용하여 2014년부터 2020년까지 한강 유역 9개의 댐 유입량을 추정하였다. 본 연구로부터 댐 유입량을 예측하는 것은 홍수 및 가뭄 통제를 위한 필수 요건들 중 하나이며 수자원 계획 및 관리에 도움이 될 것이다.

Keywords