• Title/Summary/Keyword: deep Q learning

Search Result 85, Processing Time 0.028 seconds

Application of Reinforcement Learning in Detecting Fraudulent Insurance Claims

  • Choi, Jung-Moon;Kim, Ji-Hyeok;Kim, Sung-Jun
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.125-131
    • /
    • 2021
  • Detecting fraudulent insurance claims is difficult due to small and unbalanced data. Some research has been carried out to better cope with various types of fraudulent claims. Nowadays, technology for detecting fraudulent insurance claims has been increasingly utilized in insurance and technology fields, thanks to the use of artificial intelligence (AI) methods in addition to traditional statistical detection and rule-based methods. This study obtained meaningful results for a fraudulent insurance claim detection model based on machine learning (ML) and deep learning (DL) technologies, using fraudulent insurance claim data from previous research. In our search for a method to enhance the detection of fraudulent insurance claims, we investigated the reinforcement learning (RL) method. We examined how we could apply the RL method to the detection of fraudulent insurance claims. There are limited previous cases of applying the RL method. Thus, we first had to define the RL essential elements based on previous research on detecting anomalies. We applied the deep Q-network (DQN) and double deep Q-network (DDQN) in the learning fraudulent insurance claim detection model. By doing so, we confirmed that our model demonstrated better performance than previous machine learning models.

A Study of Reinforcement Learning-based Cyber Attack Prediction using Network Attack Simulator (NASim) (네트워크 공격 시뮬레이터를 이용한 강화학습 기반 사이버 공격 예측 연구)

  • Bum-Sok Kim;Jung-Hyun Kim;Min-Suk Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.112-118
    • /
    • 2023
  • As technology advances, the need for enhanced preparedness against cyber-attacks becomes an increasingly critical problem. Therefore, it is imperative to consider various circumstances and to prepare for cyber-attack strategic technology. This paper proposes a method to solve network security problems by applying reinforcement learning to cyber-security. In general, traditional static cyber-security methods have difficulty effectively responding to modern dynamic attack patterns. To address this, we implement cyber-attack scenarios such as 'Tiny Alpha' and 'Small Alpha' and evaluate the performance of various reinforcement learning methods using Network Attack Simulator, which is a cyber-attack simulation environment based on the gymnasium (formerly Open AI gym) interface. In addition, we experimented with different RL algorithms such as value-based methods (Q-Learning, Deep-Q-Network, and Double Deep-Q-Network) and policy-based methods (Actor-Critic). As a result, we observed that value-based methods with discrete action spaces consistently outperformed policy-based methods with continuous action spaces, demonstrating a performance difference ranging from a minimum of 20.9% to a maximum of 53.2%. This result shows that the scheme not only suggests opportunities for enhancing cybersecurity strategies, but also indicates potential applications in cyber-security education and system validation across a large number of domains such as military, government, and corporate sectors.

  • PDF

Deep Q-Learning Network Model for Container Ship Master Stowage Plan (컨테이너 선박 마스터 적하계획을 위한 심층강화학습 모형)

  • Shin, Jae-Young;Ryu, Hyun-Seung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2021
  • In the Port Logistics system, Container Stowage planning is an important issue for cost-effective efficiency improvements. At present, Planners are mainly carrying out Stowage planning by manual or semi-automatically. However, as the trend of super-large container ships continues, it is difficult to calculate an efficient Stowage plan with manpower. With the recent rapid development of artificial intelligence-related technologies, many studies have been conducted to apply enhanced learning to optimization problems. Accordingly, in this paper, we intend to develop and present a Deep Q-Learning Network model for the Master Stowage planning of Container ships.

A Study on the Improvement of Heat Energy Efficiency for Utilities of Heat Consumer Plants based on Reinforcement Learning (강화학습을 기반으로 하는 열사용자 기계실 설비의 열효율 향상에 대한 연구)

  • Kim, Young-Gon;Heo, Keol;You, Ga-Eun;Lim, Hyun-Seo;Choi, Jung-In;Ku, Ki-Dong;Eom, Jae-Sik;Jeon, Young-Shin
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.26-31
    • /
    • 2018
  • This paper introduces a study to improve the thermal efficiency of the district heating user control facility based on reinforcement learning. As an example, it is proposed a general method of constructing a deep Q learning network(DQN) using deep Q learning, which is a reinforcement learning algorithm that does not specify a model. In addition, it is also introduced the big data platform system and the integrated heat management system which are specialized in energy field applied in processing huge amount of data processing from IoT sensor installed in many thermal energy control facilities.

Dynamic Action Space Handling Method for Reinforcement Learning Models

  • Woo, Sangchul;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1223-1230
    • /
    • 2020
  • Recently, extensive studies have been conducted to apply deep learning to reinforcement learning to solve the state-space problem. If the state-space problem was solved, reinforcement learning would become applicable in various fields. For example, users can utilize dance-tutorial systems to learn how to dance by watching and imitating a virtual instructor. The instructor can perform the optimal dance to the music, to which reinforcement learning is applied. In this study, we propose a method of reinforcement learning in which the action space is dynamically adjusted. Because actions that are not performed or are unlikely to be optimal are not learned, and the state space is not allocated, the learning time can be shortened, and the state space can be reduced. In an experiment, the proposed method shows results similar to those of traditional Q-learning even when the state space of the proposed method is reduced to approximately 0.33% of that of Q-learning. Consequently, the proposed method reduces the cost and time required for learning. Traditional Q-learning requires 6 million state spaces for learning 100,000 times. In contrast, the proposed method requires only 20,000 state spaces. A higher winning rate can be achieved in a shorter period of time by retrieving 20,000 state spaces instead of 6 million.

A DASH System Using the A3C-based Deep Reinforcement Learning (A3C 기반의 강화학습을 사용한 DASH 시스템)

  • Choi, Minje;Lim, Kyungshik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.297-307
    • /
    • 2022
  • The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.

Task offloading scheme based on the DRL of Connected Home using MEC (MEC를 활용한 커넥티드 홈의 DRL 기반 태스크 오프로딩 기법)

  • Ducsun Lim;Kyu-Seek Sohn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.61-67
    • /
    • 2023
  • The rise of 5G and the proliferation of smart devices have underscored the significance of multi-access edge computing (MEC). Amidst this trend, interest in effectively processing computation-intensive and latency-sensitive applications has increased. This study investigated a novel task offloading strategy considering the probabilistic MEC environment to address these challenges. Initially, we considered the frequency of dynamic task requests and the unstable conditions of wireless channels to propose a method for minimizing vehicle power consumption and latency. Subsequently, our research delved into a deep reinforcement learning (DRL) based offloading technique, offering a way to achieve equilibrium between local computation and offloading transmission power. We analyzed the power consumption and queuing latency of vehicles using the deep deterministic policy gradient (DDPG) and deep Q-network (DQN) techniques. Finally, we derived and validated the optimal performance enhancement strategy in a vehicle based MEC environment.

Path Planning with Obstacle Avoidance Based on Double Deep Q Networks (이중 심층 Q 네트워크 기반 장애물 회피 경로 계획)

  • Yongjiang Zhao;Senfeng Cen;Seung-Je Seong;J.G. Hur;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.231-240
    • /
    • 2023
  • It remains a challenge for robots to learn avoiding obstacles automatically in path planning using deep reinforcement learning (DRL). More and more researchers use DRL to train a robot in a simulated environment and verify the possibility of DRL to achieve automatic obstacle avoidance. Due to the influence factors of different environments robots and sensors, it is rare to realize automatic obstacle avoidance of robots in real scenarios. In order to learn automatic path planning by avoiding obstacles in the actual scene we designed a simple Testbed with the wall and the obstacle and had a camera on the robot. The robot's goal is to get from the start point to the end point without hitting the wall as soon as possible. For the robot to learn to avoid the wall and obstacle we propose to use the double deep Q networks (DDQN) to verify the possibility of DRL in automatic obstacle avoidance. In the experiment the robot used is Jetbot, and it can be applied to some robot task scenarios that require obstacle avoidance in automated path planning.

An Intelligent Video Streaming Mechanism based on a Deep Q-Network for QoE Enhancement (QoE 향상을 위한 Deep Q-Network 기반의 지능형 비디오 스트리밍 메커니즘)

  • Kim, ISeul;Hong, Seongjun;Jung, Sungwook;Lim, Kyungshik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.188-198
    • /
    • 2018
  • With recent development of high-speed wide-area wireless networks and wide spread of highperformance wireless devices, the demand on seamless video streaming services in Long Term Evolution (LTE) network environments is ever increasing. To meet the demand and provide enhanced Quality of Experience (QoE) with mobile users, the Dynamic Adaptive Streaming over HTTP (DASH) has been actively studied to achieve QoE enhanced video streaming service in dynamic network environments. However, the existing DASH algorithm to select the quality of requesting video segments is based on a procedural algorithm so that it reveals a limitation to adapt its performance to dynamic network situations. To overcome this limitation this paper proposes a novel quality selection mechanism based on a Deep Q-Network (DQN) model, the DQN-based DASH ABR($DQN_{ABR}$) mechanism. The $DQN_{ABR}$ mechanism replaces the existing DASH ABR algorithm with an intelligent deep learning model which optimizes service quality to mobile users through reinforcement learning. Compared to the existing approaches, the experimental analysis shows that the proposed solution outperforms in terms of adapting to dynamic wireless network situations and improving QoE experience of end users.

DQN Reinforcement Learning for Acrobot in OpenAI Gym Environment (OpenAI Gym 환경의 Acrobot에 대한 DQN 강화학습)

  • Myung-Ju Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.35-36
    • /
    • 2023
  • 본 논문에서는 OpenAI Gym 환경에서 제공하는 Acrobot-v1에 대해 DQN(Deep Q-Networks) 강화학습으로 학습시키고, 이 때 적용되는 활성화함수의 성능을 비교분석하였다. DQN 강화학습에 적용한 활성화함수는 ReLU, ReakyReLU, ELU, SELU 그리고 softplus 함수이다. 실험 결과 평균적으로 Leaky_ReLU 활성화함수를 적용했을 때의 보상 값이 높았고, 최대 보상 값은 SELU 활성화 함수를 적용할 때로 나타났다.

  • PDF