• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.034 seconds

Performance Comparison of Convolution Neural Network by Weight Initialization and Parameter Update Method1 (가중치 초기화 및 매개변수 갱신 방법에 따른 컨벌루션 신경망의 성능 비교)

  • Park, Sung-Wook;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.441-449
    • /
    • 2018
  • Deep learning has been used for various processing centered on image recognition. One core algorithms of the deep learning, convolutional neural network is an deep neural network that specialized in image recognition. In this paper, we use a convolutional neural network to classify forest insects and propose an optimization method. Experiments were carried out by combining two weight initialization and six parameter update methods. As a result, the Xavier-SGD method showed the highest performance with an accuracy of 82.53% in the 12 different combinations of experiments. Through this, the latest learning algorithms, which complement the disadvantages of the previous parameter update method, we conclude that it can not lead to higher performance than existing methods in all application environments.

Red Tide Algea Image Classification using Deep Learning based Open Source (오픈 소스 기반의 딥러닝을 이용한 적조생물 이미지 분류)

  • Park, Sun;Kim, Jongwon
    • Smart Media Journal
    • /
    • v.7 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • There are many studies on red tide due to the continuous increase in damage to domestic fish and shell farms by the harmful red tide. However, there is insufficient domestic research of identifying harmful red tide algae that automatically recognizes red tide images. In this paper, we propose a red tide image classification method using deep learning based open source. To solve the problem of recognition of various images of red tide algae, the proposed method is implemented by using tensorflow framework and Google image classification model.

Face Size Detection using Deep Learning (딥 러닝을 통한 얼굴 크기 탐지)

  • Tseden, Batkhongor;Lee, Hae-Yeoun
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.352-353
    • /
    • 2018
  • Many deep learning approaches are studied for face detection in these days. However, there is still a performance problem to run efficiently on devices with limited resources. Our method can enhance the detection speed by decreasing the number of scaling for detection methods that use many different scaling per image to detect the different size of faces. Also, we keep our deep learning model easy to implement and small as possible. Moreover, it can be used for other special object detection problems but not only for face detection.

Deep learning-based de-fogging method using fog features to solve the domain shift problem (Domain Shift 문제를 해결하기 위해 안개 특징을 이용한 딥러닝 기반 안개 제거 방법)

  • Sim, Hwi Bo;Kang, Bong Soon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1319-1325
    • /
    • 2021
  • It is important to remove fog for accurate object recognition and detection during preprocessing because images taken in foggy adverse weather suffer from poor quality of images due to scattering and absorption of light, resulting in poor performance of various vision-based applications. This paper proposes an end-to-end deep learning-based single image de-fogging method using U-Net architecture. The loss function used in the algorithm is a loss function based on Mahalanobis distance with fog features, which solves the problem of domain shifts, and demonstrates superior performance by comparing qualitative and quantitative numerical evaluations with conventional methods. We also design it to generate fog through the VGG19 loss function and use it as the next training dataset.

Enhancing Harmful Animal Recognition At Night Through Image Calibration (이미지 보정을 통한 야간의 유해 동물 인식률 향상)

  • Ha, Yeongseo;Shim, Jaechang;Kim, Joongsoo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1311-1318
    • /
    • 2021
  • Agriculture is being damaged by harmful animals such as wild boars and water deer. It need to get permission to catch a wild boar and farmers are using a lot of methods to chase harmful animals. The methods through deep learning and image processing capture harmful animals with cameras. It is difficult to analyze harmful animals that are active at night. In this case, In this case, using deep learning by image correction can achieve a higher recognition rate.

Deep Reinforcement Learning-based Distributed Routing Algorithm for Minimizing End-to-end Delay in MANET (MANET에서 종단간 통신지연 최소화를 위한 심층 강화학습 기반 분산 라우팅 알고리즘)

  • Choi, Yeong-Jun;Seo, Ju-Sung;Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1267-1270
    • /
    • 2021
  • In this paper, we propose a distributed routing algorithm for mobile ad hoc networks (MANET) where mobile devices can be utilized as relays for communication between remote source-destination nodes. The objective of the proposed algorithm is to minimize the end-to-end communication delay caused by transmission failure with deep channel fading. In each hop, the node needs to select the next relaying node by considering a tradeoff relationship between the link stability and forward link distance. Based on such feature, we formulate the problem with partially observable Markov decision process (MDP) and apply deep reinforcement learning to derive effective routing strategy for the formulated MDP. Simulation results show that the proposed algorithm outperforms other baseline schemes in terms of the average end-to-end delay.

Application of Artificial Intelligence in Capsule Endoscopy: Where Are We Now?

  • Hwang, Youngbae;Park, Junseok;Lim, Yun Jeong;Chun, Hoon Jai
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.547-551
    • /
    • 2018
  • Unlike wired endoscopy, capsule endoscopy requires additional time for a clinical specialist to review the operation and examine the lesions. To reduce the tedious review time and increase the accuracy of medical examinations, various approaches have been reported based on artificial intelligence for computer-aided diagnosis. Recently, deep learning-based approaches have been applied to many possible areas, showing greatly improved performance, especially for image-based recognition and classification. By reviewing recent deep learning-based approaches for clinical applications, we present the current status and future direction of artificial intelligence for capsule endoscopy.

Deep Learning based violent protest detection system

  • Lee, Yeon-su;Kim, Hyun-chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.87-93
    • /
    • 2019
  • In this paper, we propose a real-time drone-based violent protest detection system. Our proposed system uses drones to detect scenes of violent protest in real-time. The important problem is that the victims and violent actions have to be manually searched in videos when the evidence has been collected. Firstly, we focused to solve the limitations of existing collecting evidence devices by using drone to collect evidence live and upload in AWS(Amazon Web Service)[1]. Secondly, we built a Deep Learning based violence detection model from the videos using Yolov3 Feature Pyramid Network for human activity recognition, in order to detect three types of violent action. The built model classifies people with possession of gun, swinging pipe, and violent activity with the accuracy of 92, 91 and 80.5% respectively. This system is expected to significantly save time and human resource of the existing collecting evidence.

Deep Learning based Object Detector for Vehicle Recognition on Images Acquired with Fisheye Lens Cameras (어안렌즈 카메라로 획득한 영상에서 차량 인식을 위한 딥러닝 기반 객체 검출기)

  • Hieu, Tang Quang;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.128-135
    • /
    • 2019
  • This paper presents a deep learning-based object detection method for recognizing vehicles in images acquired through cameras installed on ceiling of underground parking lot. First, we present an image enhancement method, which improves vehicle detection performance under dark lighting environment. Second, we present a new CNN-based multiscale classifiers for detecting vehicles in images acquired through cameras with fisheye lens. Experiments show that the presented vehicle detector has better performance than the conventional ones.

An Improved Deep Learning Method for Animal Images (동물 이미지를 위한 향상된 딥러닝 학습)

  • Wang, Guangxing;Shin, Seong-Yoon;Shin, Kwang-Weong;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.123-124
    • /
    • 2019
  • This paper proposes an improved deep learning method based on small data sets for animal image classification. Firstly, we use a CNN to build a training model for small data sets, and use data augmentation to expand the data samples of the training set. Secondly, using the pre-trained network on large-scale datasets, such as VGG16, the bottleneck features in the small dataset are extracted and to be stored in two NumPy files as new training datasets and test datasets. Finally, training a fully connected network with the new datasets. In this paper, we use Kaggle famous Dogs vs Cats dataset as the experimental dataset, which is a two-category classification dataset.

  • PDF