• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.03 seconds

Development of a Steel Plate Surface Defect Detection System Based on Small Data Deep Learning (소량 데이터 딥러닝 기반 강판 표면 결함 검출 시스템 개발)

  • Gaybulayev, Abdulaziz;Lee, Na-Hyeon;Lee, Ki-Hwan;Kim, Tae-Hyong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.129-138
    • /
    • 2022
  • Collecting and labeling sufficient training data, which is essential to deep learning-based visual inspection, is difficult for manufacturers to perform because it is very expensive. This paper presents a steel plate surface defect detection system with industrial-grade detection performance by training a small amount of steel plate surface images consisting of labeled and non-labeled data. To overcome the problem of lack of training data, we propose two data augmentation techniques: program-based augmentation, which generates defect images in a geometric way, and generative model-based augmentation, which learns the distribution of labeled data. We also propose a 4-step semi-supervised learning using pseudo labels and consistency training with fixed-size augmentation in order to utilize unlabeled data for training. The proposed technique obtained about 99% defect detection performance for four defect types by using 100 real images including labeled and unlabeled data.

A Study on Image Labeling Technique for Deep-Learning-Based Multinational Tanks Detection Model

  • Kim, Taehoon;Lim, Dongkyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.

Image Segmentation for Fire Prediction using Deep Learning (딥러닝을 이용한 화재 발생 예측 이미지 분할)

  • TaeHoon, Kim;JongJin, Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • In this paper, we used a deep learning model to detect and segment flame and smoke in real time from fires. To this end, well known U-NET was used to separate and divide the flame and smoke of the fire using multi-class. As a result of learning using the proposed technique, the values of loss error and accuracy are very good at 0.0486 and 0.97996, respectively. The IOU value used in object detection is also very good at 0.849. As a result of predicting fire images that were not used for learning using the learned model, the flame and smoke of fire are well detected and segmented, and smoke color were well distinguished. Proposed method can be used to build fire prediction and detection system.

Deep Interpretable Learning for a Rapid Response System (긴급대응 시스템을 위한 심층 해석 가능 학습)

  • Nguyen, Trong-Nghia;Vo, Thanh-Hung;Kho, Bo-Gun;Lee, Guee-Sang;Yang, Hyung-Jeong;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.805-807
    • /
    • 2021
  • In-hospital cardiac arrest is a significant problem for medical systems. Although the traditional early warning systems have been widely applied, they still contain many drawbacks, such as the high false warning rate and low sensitivity. This paper proposed a strategy that involves a deep learning approach based on a novel interpretable deep tabular data learning architecture, named TabNet, for the Rapid Response System. This study has been processed and validated on a dataset collected from two hospitals of Chonnam National University, Korea, in over 10 years. The learning metrics used for the experiment are the area under the receiver operating characteristic curve score (AUROC) and the area under the precision-recall curve score (AUPRC). The experiment on a large real-time dataset shows that our method improves compared to other machine learning-based approaches.

A Study on Additional Processing Processes for Learning Multiple-input Images and Improving Inference Efficiency in Deep Learning (딥러닝의 다수 입력 이미지 학습 및 추론 효율 향상을 위해 추가적인 처리 프로세스 연구)

  • Choi, Donggyu;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.44-46
    • /
    • 2021
  • Many cameras are used in real life, and they are often used for monitoring and crime prevention to check the situation of problems beyond just taking pictures for memories. Such surveillance and prevention are generally used only for simple storage, and in systems utilizing multiple cameras, utilizing additional features would require additional hardware specifications. In this paper, we add image input methods and post-object processing processes to process multiple image inputs from one hardware or server that perform object detection systems that deviate from typical image processing. The performance of the method is utilized in both learning and reasoning of the hardware performing deep learning, and allows improved image processing processes to be performed.

  • PDF

Cascaded-Hop For DeepFake Videos Detection

  • Zhang, Dengyong;Wu, Pengjie;Li, Feng;Zhu, Wenjie;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1671-1686
    • /
    • 2022
  • Face manipulation tools represented by Deepfake have threatened the security of people's biological identity information. Particularly, manipulation tools with deep learning technology have brought great challenges to Deepfake detection. There are many solutions for Deepfake detection based on traditional machine learning and advanced deep learning. However, those solutions of detectors almost have problems of poor performance when evaluated on different quality datasets. In this paper, for the sake of making high-quality Deepfake datasets, we provide a preprocessing method based on the image pixel matrix feature to eliminate similar images and the residual channel attention network (RCAN) to resize the scale of images. Significantly, we also describe a Deepfake detector named Cascaded-Hop which is based on the PixelHop++ system and the successive subspace learning (SSL) model. By feeding the preprocessed datasets, Cascaded-Hop achieves a good classification result on different manipulation types and multiple quality datasets. According to the experiment on FaceForensics++ and Celeb-DF, the AUC (area under curve) results of our proposed methods are comparable to the state-of-the-art models.

A Fully Convolutional Network Model for Classifying Liver Fibrosis Stages from Ultrasound B-mode Images (초음파 B-모드 영상에서 FCN(fully convolutional network) 모델을 이용한 간 섬유화 단계 분류 알고리즘)

  • Kang, Sung Ho;You, Sun Kyoung;Lee, Jeong Eun;Ahn, Chi Young
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.48-54
    • /
    • 2020
  • In this paper, we deal with a liver fibrosis classification problem using ultrasound B-mode images. Commonly representative methods for classifying the stages of liver fibrosis include liver biopsy and diagnosis based on ultrasound images. The overall liver shape and the smoothness and roughness of speckle pattern represented in ultrasound images are used for determining the fibrosis stages. Although the ultrasound image based classification is used frequently as an alternative or complementary method of the invasive biopsy, it also has the limitations that liver fibrosis stage decision depends on the image quality and the doctor's experience. With the rapid development of deep learning algorithms, several studies using deep learning methods have been carried out for automated liver fibrosis classification and showed superior performance of high accuracy. The performance of those deep learning methods depends closely on the amount of datasets. We propose an enhanced U-net architecture to maximize the classification accuracy with limited small amount of image datasets. U-net is well known as a neural network for fast and precise segmentation of medical images. We design it newly for the purpose of classifying liver fibrosis stages. In order to assess the performance of the proposed architecture, numerical experiments are conducted on a total of 118 ultrasound B-mode images acquired from 78 patients with liver fibrosis symptoms of F0~F4 stages. The experimental results support that the performance of the proposed architecture is much better compared to the transfer learning using the pre-trained model of VGGNet.

Forecasting Innovation Performance via Deep Learning Algorithm : A Case of Korean Manufacturing Industry (빅데이터 분석방법을 활용한 제조업 혁신성과예측 방법에 대한 연구 : 딥 러닝 알고리즘을 중심으로)

  • Hwang, Jeong-jae;Kim, Jae Young;Park, Jaemin
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.2
    • /
    • pp.818-837
    • /
    • 2018
  • Technological innovation has inherent difficulties, largely due to the uncertainties of technology. Thus, the forecasting methodology to reduce the risk of uncertainty in the innovation process has been presented both in quantitative and qualitative fields. On the other hand, big data and artificial intelligence have attracted great interest recently, and deep learning, which is one of the algorithms of AlphaGo, is showing excellent performance. In this study, deep learning methodology was applied to the prediction of innovation performance. To make the prediction model, we used KIS 2016 data. The input factors were importance of information source and innovation objectives and the output factor was innovation performance index, which was calculated for this study. As a result of the analysis, it can be confirmed that the accuracy of prediction is improved compared with the previous studies. As learning progressed, the degree of freedom of prediction also improved.

Souce Code Identification Using Deep Neural Network (심층신경망을 이용한 소스 코드 원작자 식별)

  • Rhim, Jisu;Abuhmed, Tamer
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.9
    • /
    • pp.373-378
    • /
    • 2019
  • Since many programming sources are open online, problems with reckless plagiarism and copyrights are occurring. Among them, source codes produced by repeated authors may have unique fingerprints due to their programming characteristics. This paper identifies each author by learning from a Google Code Jam program source using deep neural network. In this case, the original creator's source is to be vectored using a pre-processing instrument such as predictive-based vector or frequency-based approach, TF-IDF, etc. and to identify the original program source by learning by using a deep neural network. In addition a language-independent learning system was constructed using a pre-processing machine and compared with other existing learning methods. Among them, models using TF-IDF and in-depth neural networks were found to perform better than those using other pre-processing or other learning methods.

A Study on Patent Literature Classification Using Distributed Representation of Technical Terms (기술용어 분산표현을 활용한 특허문헌 분류에 관한 연구)

  • Choi, Yunsoo;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.2
    • /
    • pp.179-199
    • /
    • 2019
  • In this paper, we propose optimal methodologies for classifying patent literature by examining various feature extraction methods, machine learning and deep learning models, and provide optimal performance through experiments. We compared the traditional BoW method and a distributed representation method (word embedding vector) as a feature extraction, and compared the morphological analysis and multi gram as the method of constructing the document collection. In addition, classification performance was verified using traditional machine learning model and deep learning model. Experimental results show that the best performance is achieved when we apply the deep learning model with distributed representation and morphological analysis based feature extraction. In Section, Class and Subclass classification experiments, We improved the performance by 5.71%, 18.84% and 21.53%, respectively, compared with traditional classification methods.