• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.039 seconds

Bioimage Analyses Using Artificial Intelligence and Future Ecological Research and Education Prospects: A Case Study of the Cichlid Fishes from Lake Malawi Using Deep Learning

  • Joo, Deokjin;You, Jungmin;Won, Yong-Jin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Ecological research relies on the interpretation of large amounts of visual data obtained from extensive wildlife surveys, but such large-scale image interpretation is costly and time-consuming. Using an artificial intelligence (AI) machine learning model, especially convolution neural networks (CNN), it is possible to streamline these manual tasks on image information and to protect wildlife and record and predict behavior. Ecological research using deep-learning-based object recognition technology includes various research purposes such as identifying, detecting, and identifying species of wild animals, and identification of the location of poachers in real-time. These advances in the application of AI technology can enable efficient management of endangered wildlife, animal detection in various environments, and real-time analysis of image information collected by unmanned aerial vehicles. Furthermore, the need for school education and social use on biodiversity and environmental issues using AI is raised. School education and citizen science related to ecological activities using AI technology can enhance environmental awareness, and strengthen more knowledge and problem-solving skills in science and research processes. Under these prospects, in this paper, we compare the results of our early 2013 study, which automatically identified African cichlid fish species using photographic data of them, with the results of reanalysis by CNN deep learning method. By using PyTorch and PyTorch Lightning frameworks, we achieve an accuracy of 82.54% and an F1-score of 0.77 with minimal programming and data preprocessing effort. This is a significant improvement over the previous our machine learning methods, which required heavy feature engineering costs and had 78% accuracy.

3D Medical Image Data Augmentation for CT Image Segmentation (CT 이미지 세그멘테이션을 위한 3D 의료 영상 데이터 증강 기법)

  • Seonghyeon Ko;Huigyu Yang;Moonseong Kim;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.85-92
    • /
    • 2023
  • Deep learning applications are increasingly being leveraged for disease detection tasks in medical imaging modalities such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Most data-centric deep learning challenges necessitate the use of supervised learning methodologies to attain high accuracy and to facilitate performance evaluation through comparison with the ground truth. Supervised learning mandates a substantial amount of image and label sets, however, procuring an adequate volume of medical imaging data for training is a formidable task. Various data augmentation strategies can mitigate the underfitting issue inherent in supervised learning-based models that are trained on limited medical image and label sets. This research investigates the enhancement of a deep learning-based rib fracture segmentation model and the efficacy of data augmentation techniques such as left-right flipping, rotation, and scaling. Augmented dataset with L/R flipping and rotations(30°, 60°) increased model performance, however, dataset with rotation(90°) and ⨯0.5 rescaling decreased model performance. This indicates the usage of appropriate data augmentation methods depending on datasets and tasks.

Estimation of two-dimensional position of soybean crop for developing weeding robot (제초로봇 개발을 위한 2차원 콩 작물 위치 자동검출)

  • SooHyun Cho;ChungYeol Lee;HeeJong Jeong;SeungWoo Kang;DaeHyun Lee
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.15-23
    • /
    • 2023
  • In this study, two-dimensional location of crops for auto weeding was detected using deep learning. To construct a dataset for soybean detection, an image-capturing system was developed using a mono camera and single-board computer and the system was mounted on a weeding robot to collect soybean images. A dataset was constructed by extracting RoI (region of interest) from the raw image and each sample was labeled with soybean and the background for classification learning. The deep learning model consisted of four convolutional layers and was trained with a weakly supervised learning method that can provide object localization only using image-level labeling. Localization of the soybean area can be visualized via CAM and the two-dimensional position of the soybean was estimated by clustering the pixels associated with the soybean area and transforming the pixel coordinates to world coordinates. The actual position, which is determined manually as pixel coordinates in the image was evaluated and performances were 6.6(X-axis), 5.1(Y-axis) and 1.2(X-axis), 2.2(Y-axis) for MSE and RMSE about world coordinates, respectively. From the results, we confirmed that the center position of the soybean area derived through deep learning was sufficient for use in automatic weeding systems.

Multimodal Supervised Contrastive Learning for Crop Disease Diagnosis (멀티 모달 지도 대조 학습을 이용한 농작물 병해 진단 예측 방법)

  • Hyunseok Lee;Doyeob Yeo;Gyu-Sung Ham;Kanghan Oh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.285-292
    • /
    • 2023
  • With the wide spread of smart farms and the advancements in IoT technology, it is easy to obtain additional data in addition to crop images. Consequently, deep learning-based crop disease diagnosis research utilizing multimodal data has become important. This study proposes a crop disease diagnosis method using multimodal supervised contrastive learning by expanding upon the multimodal self-supervised learning. RandAugment method was used to augment crop image and time series of environment data. These augmented data passed through encoder and projection head for each modality, yielding low-dimensional features. Subsequently, the proposed multimodal supervised contrastive loss helped features from the same class get closer while pushing apart those from different classes. Following this, the pretrained model was fine-tuned for crop disease diagnosis. The visualization of t-SNE result and comparative assessments of crop disease diagnosis performance substantiate that the proposed method has superior performance than multimodal self-supervised learning.

Deep Learning-based Prediction of PM10 Fluctuation from Gwanak-gu Urban Area, Seoul, Korea (서울 관악구 도심지역 미세먼지(PM10) 관측 값을 활용한 딥러닝 기반의 농도변동 예측)

  • Choi, Han-Soo;Kang, Myungjoo;Kim, Yong Cheol;Choi, Hanna
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.74-83
    • /
    • 2020
  • Since fine dust (PM10) has a significant influence on soil and groundwater composition during dry and wet deposition processes, it is of a vital importance to understand the fate and transport of aerosol in geological environments. Fine dust is formed after the chemical reaction of several precursors, typically observed in short intervals within a few hours. In this study, deep learning approach was applied to predict the fate of fine dust in an urban area. Deep learning training was performed by combining convolutional neural network (CNN) and recurrent neural network (RNN) techniques. The PM10 concentration after 1 hour was predicted based on three-hour data by setting SO2, CO, O3, NO2, and PM10 as training data. The obtained coefficient of determination value, R2, was 0.8973 between predicted and measured values for the entire concentration range of PM10, suggesting deep learning method can be developed into a reliable and viable tool for prediction of fine dust concentration.

Water Level Forecasting based on Deep Learning: A Use Case of Trinity River-Texas-The United States (딥러닝 기반 침수 수위 예측: 미국 텍사스 트리니티강 사례연구)

  • Tran, Quang-Khai;Song, Sa-kwang
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.607-612
    • /
    • 2017
  • This paper presents an attempt to apply Deep Learning technology to solve the problem of forecasting floods in urban areas. We employ Recurrent Neural Networks (RNNs), which are suitable for analyzing time series data, to learn observed data of river water and to predict the water level. To test the model, we use water observation data of a station in the Trinity river, Texas, the U.S., with data from 2013 to 2015 for training and data in 2016 for testing. Input of the neural networks is a 16-record-length sequence of 15-minute-interval time-series data, and output is the predicted value of the water level at the next 30 minutes and 60 minutes. In the experiment, we compare three Deep Learning models including standard RNN, RNN trained with Back Propagation Through Time (RNN-BPTT), and Long Short-Term Memory (LSTM). The prediction quality of LSTM can obtain Nash Efficiency exceeding 0.98, while the standard RNN and RNN-BPTT also provide very high accuracy.

A Study of Research on Methods of Automated Biomedical Document Classification using Topic Modeling and Deep Learning (토픽모델링과 딥 러닝을 활용한 생의학 문헌 자동 분류 기법 연구)

  • Yuk, JeeHee;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.63-88
    • /
    • 2018
  • This research evaluated differences of classification performance for feature selection methods using LDA topic model and Doc2Vec which is based on word embedding using deep learning, feature corpus sizes and classification algorithms. In addition to find the feature corpus with high performance of classification, an experiment was conducted using feature corpus was composed differently according to the location of the document and by adjusting the size of the feature corpus. Conclusionally, in the experiments using deep learning evaluate training frequency and specifically considered information for context inference. This study constructed biomedical document dataset, Disease-35083 which consisted biomedical scholarly documents provided by PMC and categorized by the disease category. Throughout the study this research verifies which type and size of feature corpus produces the highest performance and, also suggests some feature corpus which carry an extensibility to specific feature by displaying efficiency during the training time. Additionally, this research compares the differences between deep learning and existing method and suggests an appropriate method by classification environment.

Deep-learning Prediction Based Molecular Structure Virtual Screening (딥러닝 예측 기반의 OLED 재료 분자구조 가상 스크리닝)

  • Jeon, Yerin;Lee, Kyu-Hwang;Lee, Hokyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.230-234
    • /
    • 2020
  • A system that uses deep-learning techniques to predict properties from molecular structures has been developed to apply to chemical, biological and material studies. Based on the database where molecular structure and property information are accumulated, a deep-learning model looking for the relationship between the structure and the property can eventually provide a property prediction for the new molecular structure. In addition, experiments on the actual properties of the selected molecular structure will be carried out in parallel to carry out continuous verification and model updates. This allows for the screening of high-quality molecular structures from large quantities of molecular structures within a short period of time, and increases the efficiency and success rate of research. In this paper, we would like to introduce the overall composition of the materiality prediction system using deep-learning and the cases applied in the actual excavation of new structures in LG Chem.

Deep Learning-based Rice Seed Segmentation for Phynotyping (표현체 연구를 위한 심화학습 기반 벼 종자 분할)

  • Jeong, Yu Seok;Lee, Hong Ro;Baek, Jeong Ho;Kim, Kyung Hwan;Chung, Young Suk;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.23-29
    • /
    • 2020
  • The National Institute of Agricultural Sciences of the Rural Developement Administration (NAS, RDA) is conducting various studies on various crops, such as monitoring the cultivation environment and analyzing harvested seeds for high-throughput phenotyping. In this paper, we propose a deep learning-based rice seed segmentation method to analyze the seeds of various crops owned by the NAS. Using Mask-RCNN deep learning model, we perform the rice seed segmentation from manually taken images under specific environment (constant lighting, white background) for analyzing the seed characteristics. For this purpose, we perform the parameter tuning process of the Mask-RCNN model. By the proposed method, the results of the test on seed object detection showed that the accuracy was 82% for rice stem image and 97% for rice grain image, respectively. As a future study, we are planning to researches of more reliable seeds extraction from cluttered seed images by a deep learning-based approach and selection of high-throughput phenotype through precise data analysis such as length, width, and thickness from the detected seed objects.

Power Trading System through the Prediction of Demand and Supply in Distributed Power System Based on Deep Reinforcement Learning (심층강화학습 기반 분산형 전력 시스템에서의 수요와 공급 예측을 통한 전력 거래시스템)

  • Lee, Seongwoo;Seon, Joonho;Kim, Soo-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.163-171
    • /
    • 2021
  • In this paper, the energy transaction system was optimized by applying a resource allocation algorithm and deep reinforcement learning in the distributed power system. The power demand and supply environment were predicted by deep reinforcement learning. We propose a system that pursues common interests in power trading and increases the efficiency of long-term power transactions in the paradigm shift from conventional centralized to distributed power systems in the power trading system. For a realistic energy simulation model and environment, we construct the energy market by learning weather and monthly patterns adding Gaussian noise. In simulation results, we confirm that the proposed power trading systems are cooperative with each other, seek common interests, and increase profits in the prolonged energy transaction.