Abstract
The National Institute of Agricultural Sciences of the Rural Developement Administration (NAS, RDA) is conducting various studies on various crops, such as monitoring the cultivation environment and analyzing harvested seeds for high-throughput phenotyping. In this paper, we propose a deep learning-based rice seed segmentation method to analyze the seeds of various crops owned by the NAS. Using Mask-RCNN deep learning model, we perform the rice seed segmentation from manually taken images under specific environment (constant lighting, white background) for analyzing the seed characteristics. For this purpose, we perform the parameter tuning process of the Mask-RCNN model. By the proposed method, the results of the test on seed object detection showed that the accuracy was 82% for rice stem image and 97% for rice grain image, respectively. As a future study, we are planning to researches of more reliable seeds extraction from cluttered seed images by a deep learning-based approach and selection of high-throughput phenotype through precise data analysis such as length, width, and thickness from the detected seed objects.
농업진흥청 국립농업과학원에서는 다양한 종류의 농작물에 대해 우량 종자 확보를 위한 생육환경 모니터링 및 수확된 종자의 분석과 같은 다양한 연구를 진행하고 있다. 본 논문에서는 농업진흥청에서 보유하고 있는 다양한 종류의 농작물 씨앗을 분석하기 위해 종자 객체 검출 방법을 제안한다. 제안된 방법은 Mask-RCNN을 이용한 전이학습을 수행하며 주어진 특정 환경 (일정한 조도, 흰색 배경)에서 촬영한 입력 영상을 종자 객체 인식을 위한 적절한 매개 변수 적합 (Tuning) 과정 및 영상 분할 작업을 진행한다. 제안된 방법으로 종자 객체 검출에 대한 실험결과로 벼 이삭 영상의 경우 82%와 단순한 볍씨 영상의 경우 97%의 정확도로 벼 낱알을 검출하였다. 향후 연구로 복잡한 상황의 종자 영상 분할을 위한 심화학습 기반의 접근법 및 검출된 종자 객체로부터 길이, 폭, 두께와 같은 정밀한 데이터 분석을 통하여 우량 종자 연구를 계획하고 있다.