• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.029 seconds

Map Detection using Deep Learning

  • Oh, Byoung-Woo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.61-72
    • /
    • 2020
  • Recently, researches that are using deep learning technology in various fields are being conducted. The fields include geographic map processing. In this paper, I propose a method to infer where the map area included in the image is. The proposed method generates and learns images including a map, detects map areas from input images, extracts character strings belonging to those map areas, and converts the extracted character strings into coordinates through geocoding to infer the coordinates of the input image. Faster R-CNN was used for learning and map detection. In the experiment, the difference between the center coordinate of the map on the test image and the center coordinate of the detected map is calculated. The median value of the results of the experiment is 0.00158 for longitude and 0.00090 for latitude. In terms of distance, the difference is 141m in the east-west direction and 100m in the north-south direction.

Structural novelty detection based on sparse autoencoders and control charts

  • Finotti, Rafaelle P.;Gentile, Carmelo;Barbosa, Flavio;Cury, Alexandre
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.647-664
    • /
    • 2022
  • The powerful data mapping capability of computational deep learning methods has been recently explored in academic works to develop strategies for structural health monitoring through appropriate characterization of dynamic responses. In many cases, these studies concern laboratory prototypes and finite element models to validate the proposed methodologies. Therefore, the present work aims to investigate the capability of a deep learning algorithm called Sparse Autoencoder (SAE) specifically focused on detecting structural alterations in real-case studies. The idea is to characterize the dynamic responses via SAE models and, subsequently, to detect the onset of abnormal behavior through the Shewhart T control chart, calculated with SAE extracted features. The anomaly detection approach is exemplified using data from the Z24 bridge, a classical benchmark, and data from the continuous monitoring of the San Vittore bell-tower, Italy. In both cases, the influence of temperature is also evaluated. The proposed approach achieved good performance, detecting structural changes even under temperature variations.

Concrete Crack Detection and Visualization Method Using CNN Model (CNN 모델을 활용한 콘크리트 균열 검출 및 시각화 방법)

  • Choi, Ju-hee;Kim, Young-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.73-74
    • /
    • 2022
  • Concrete structures occupy the largest proportion of modern infrastructure, and concrete structures often have cracking problems. Existing concrete crack diagnosis methods have limitations in crack evaluation because they rely on expert visual inspection. Therefore, in this study, we design a deep learning model that detects, visualizes, and outputs cracks on the surface of RC structures based on image data by using a CNN (Convolution Neural Networks) model that can process two- and three-dimensional data such as video and image data. do. An experimental study was conducted on an algorithm to automatically detect concrete cracks and visualize them using a CNN model. For the three deep learning models used for algorithm learning in this study, the concrete crack prediction accuracy satisfies 90%, and in particular, the 'InceptionV3'-based CNN model showed the highest accuracy. In the case of the crack detection visualization model, it showed high crack detection prediction accuracy of more than 95% on average for data with crack width of 0.2 mm or more.

  • PDF

2009-2022 Thailand public perception analysis of nuclear energy on social media using deep transfer learning technique

  • Wasin Vechgama;Watcha Sasawattakul;Kampanart Silva
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2026-2033
    • /
    • 2023
  • Due to Thailand's nuclear energy public acceptance problem, the understanding of nuclear energy public perception was the key factor affecting to re-consideration of the nuclear energy program. Thailand Institute of Nuclear Technology and its alliances together developed the classification model for the nuclear energy public perception from the big data comments on social media using Facebook using deep transfer learning. The objective was to insight into the Thailand nuclear energy public perception on Facebook social media platform using sentiment analysis. The supervised learning was used to generate up-to-date classification model with more than 80% accuracy to classify the public perception on nuclear power plant news on Facebook from 2009 to 2022. The majority of neutral sentiments (80%) represented the opportunity for Thailand to convince people to receive a better nuclear perception. Negative sentiments (14%) showed support for other alternative energies due to nuclear accident concerns while positive sentiments (6%) expressed support for innovative nuclear technologies.

HANDWRITTEN HANGUL RECOGNITION MODEL USING MULTI-LABEL CLASSIFICATION

  • HANA CHOI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Recently, as deep learning technology has developed, various deep learning technologies have been introduced in handwritten recognition, greatly contributing to performance improvement. The recognition accuracy of handwritten Hangeul recognition has also improved significantly, but prior research has focused on recognizing 520 Hangul characters or 2,350 Hangul characters using SERI95 data or PE92 data. In the past, most of the expressions were possible with 2,350 Hangul characters, but as globalization progresses and information and communication technology develops, there are many cases where various foreign words need to be expressed in Hangul. In this paper, we propose a model that recognizes and combines the consonants, medial vowels, and final consonants of a Korean syllable using a multi-label classification model, and achieves a high recognition accuracy of 98.38% as a result of learning with the public data of Korean handwritten characters, PE92. In addition, this model learned only 2,350 Hangul characters, but can recognize the characters which is not included in the 2,350 Hangul characters

Evaluating Unsupervised Deep Learning Models for Network Intrusion Detection Using Real Security Event Data

  • Jang, Jiho;Lim, Dongjun;Seong, Changmin;Lee, JongHun;Park, Jong-Geun;Cheong, Yun-Gyung
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.10-19
    • /
    • 2022
  • AI-based Network Intrusion Detection Systems (AI-NIDS) detect network attacks using machine learning and deep learning models. Recently, unsupervised AI-NIDS methods are getting more attention since there is no need for labeling, which is crucial for building practical NIDS systems. This paper aims to test the impact of designing autoencoder models that can be applied to unsupervised an AI-NIDS in real network systems. We collected security events of legacy network security system and carried out an experiment. We report the results and discuss the findings.

Fashion Clothing Image Classification Deep Learning (패션 의류 영상 분류 딥러닝)

  • Shin, Seong-Yoon;Wang, Guangxing;Shin, Kwang-Seong;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.676-677
    • /
    • 2022
  • In this paper, we propose a new method based on a deep learning model with an optimized dynamic decay learning rate and improved model structure to achieve fast and accurate classification of fashion clothing images. Experiments are performed using the model proposed in the Fashion-MNIST dataset and compared with methods of CNN, LeNet, LSTM and BiLSTM.

  • PDF

Deep reinforcement learning for base station switching scheme with federated LSTM-based traffic predictions

  • Hyebin Park;Seung Hyun Yoon
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.379-391
    • /
    • 2024
  • To meet increasing traffic requirements in mobile networks, small base stations (SBSs) are densely deployed, overlapping existing network architecture and increasing system capacity. However, densely deployed SBSs increase energy consumption and interference. Although these problems already exist because of densely deployed SBSs, even more SBSs are needed to meet increasing traffic demands. Hence, base station (BS) switching operations have been used to minimize energy consumption while guaranteeing quality-of-service (QoS) for users. In this study, to optimize energy efficiency, we propose the use of deep reinforcement learning (DRL) to create a BS switching operation strategy with a traffic prediction model. First, a federated long short-term memory (LSTM) model is introduced to predict user traffic demands from user trajectory information. Next, the DRL-based BS switching operation scheme determines the switching operations for the SBSs using the predicted traffic demand. Experimental results confirm that the proposed scheme outperforms existing approaches in terms of energy efficiency, signal-to-interference noise ratio, handover metrics, and prediction performance.

Early Detection of Rice Leaf Blast Disease using Deep-Learning Techniques

  • Syed Rehan Shah;Syed Muhammad Waqas Shah;Hadia Bibi;Mirza Murad Baig
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.211-221
    • /
    • 2024
  • Pakistan is a top producer and exporter of high-quality rice, but traditional methods are still being used for detecting rice diseases. This research project developed an automated rice blast disease diagnosis technique based on deep learning, image processing, and transfer learning with pre-trained models such as Inception V3, VGG16, VGG19, and ResNet50. The modified connection skipping ResNet 50 had the highest accuracy of 99.16%, while the other models achieved 98.16%, 98.47%, and 98.56%, respectively. In addition, CNN and an ensemble model K-nearest neighbor were explored for disease prediction, and the study demonstrated superior performance and disease prediction using recommended web-app approaches.

A Novel Deep Learning Based Architecture for Measuring Diabetes

  • Shaima Sharaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.119-126
    • /
    • 2024
  • Diabetes is a chronic condition that happens when the pancreas fails to produce enough insulin or when the body's insulin is ineffectively used. Uncontrolled diabetes causes hyperglycaemia, or high blood sugar, which causes catastrophic damage to many of the body's systems, including the neurons and blood vessels, over time. The burden of disease on the global healthcare system is enormous. As a result, early diabetes diagnosis is critical in saving many lives. Current methods for determining whether a person has diabetes or is at risk of acquiring diabetes, on the other hand, rely heavily on clinical biomarkers. This research presents a unique deep learning architecture for predicting whether or not a person has diabetes and the severity levels of diabetes from the person's retinal image. This study incorporates datasets such as EyePACS and IDRID, which comprise Diabetic Retinopathy (DR) images and uses Dense-121 as the base due to its improved performance.