• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.031 seconds

Enhancement of concrete crack detection using U-Net

  • Molaka Maruthi;Lee, Dong Eun;Kim Bubryur
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.152-159
    • /
    • 2024
  • Cracks in structural materials present a critical challenge to infrastructure safety and long-term durability. Timely and precise crack detection is essential for proactive maintenance and the prevention of catastrophic structural failures. This study introduces an innovative approach to tackle this issue using U-Net deep learning architecture. The primary objective of the intended research is to explore the potential of U-Net in enhancing the precision and efficiency of crack detection across various concrete crack detection under various environmental conditions. Commencing with the assembling by a comprehensive dataset featuring diverse images of concrete cracks, optimizing crack visibility and facilitating feature extraction through advanced image processing techniques. A wide range of concrete crack images were collected and used advanced techniques to enhance their visibility. The U-Net model, well recognized for its proficiency in image segmentation tasks, is implemented to achieve precise segmentation and localization of concrete cracks. In terms of accuracy, our research attests to a substantial advancement in automated of 95% across all tested concrete materials, surpassing traditional manual inspection methods. The accuracy extends to detecting cracks of varying sizes, orientations, and challenging lighting conditions, underlining the systems robustness and reliability. The reliability of the proposed model is measured using performance metrics such as, precision(93%), Recall(96%), and F1-score(94%). For validation, the model was tested on a different set of data and confirmed an accuracy of 94%. The results shows that the system consistently performs well, even with different concrete types and lighting conditions. With real-time monitoring capabilities, the system ensures the prompt detection of cracks as they emerge, holding significant potential for reducing risks associated with structural damage and achieving substantial cost savings.

Generalized On-Device AI Framework for Semantic Segmentation (의미론적 분할을 위한 범용 온디바이스 AI 프레임워크)

  • Jun-Young Hong;Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.903-910
    • /
    • 2024
  • Complex semantic segmentation tasks are primarily performed in server environments equipped with high-performance graphics hardware such as GPUs and TPUs. This cloud-based AI inference method operates by transmitting processed results to the client. However, this approach is dependent on network communication and raises concerns about privacy infringement during the process of transmitting user data to servers. Therefore, this paper proposes a Generalized On-Device Framework for Semantic Segmentation that can operate in mobile environments with high accessibility to people. This framework supports various semantic segmentation models and enables direct inference in mobile environments through model conversion and efficient memory management techniques. It is expected that this research approach will enable effective execution of semantic segmentation algorithms even in resource-constrained situations such as IoT devices, autonomous vehicles, and industrial robots, which are not cloud computing environments. This is expected to contribute to the advancement of real-time image processing, privacy protection, and network-independent AI application fields.

Comparison of Retaining Wall Displacement Prediction Performance Using Sensor Data (센서 데이터를 활용한 옹벽 변위 예측 성능 비교)

  • Sheilla Wesonga;Jang-Sik Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1035-1040
    • /
    • 2024
  • The main objective of inspecting structures is to ensure the safety of all entities that utilize these structures as cracks in structures if not attended to could lead to serious calamities. With that objective in mind, artificial intelligence (AI) based technologies to assist human inspectors are needed especially for retaining walls in structures. In this paper, we predict the crack displacement of retaining walls using an Polynomial Regressive (PR) analysis model, as well as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning models, and compare their performance. For the performance comparison, we apply multi-variable feature inputs, by utilizing temperature and rainfall data that may affect the crack displacement of the retaining wall. The training and inference data were collected through measuring sensors such as inclinometers, thermometers, and rain gauges. The results show that the multi-variable feature model had a MAE of 0.00186, 0.00450 and 0.00842, which outperformed the single variable feature model at 0.00393, 0.00556 and 0.00929 for the polynomial regression model, LSTM model and the GRU model respectively from the evaluation performed.

A new Mada-CenterNet based on Dual Block to improve accuracy of pest counting (해충 카운팅의 정확성 향상을 위한 Dual Block 기반의 새로운 Mada-CenterNet)

  • Hee-Jin Gwak;Cheol-Hee Lee;Chang-Hwan Son
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.342-351
    • /
    • 2024
  • Effective pest control in the agricultural field is essential for improving crop productivity. To do so, information on the type and timing of pests, as well as the amount of pests generated, is required. Mada-CenterNet, a prior study on pest counting, which is a method of identifying the amount of pest occurrence, has improved the accuracy of pest counting by utilizing transformable convolution and multiscale attention fusion and is reported to be the best in the field. In this study, a new transformer structure with a dual block was applied instead of multiscale attention, which is the transformer structure of Mada-CenterNet. More sophisticated feature maps were extracted through cross-attention of pixel path and semantic path. As a result of the experiment, the proposed model has improved the accuracy of pest counting. It is better than the existing Mada-CenterNet and effectively alleviates obstruction problems, damage to pests' bodies, and detection difficulties caused by various appearances. Unlike conventional pest counting methods, it can secure the advantage of reducing manpower and time costs, and it is expected that it can be used in other agricultural fields that require counting of objects.

VmCUnet for Improving the Performance of Skin lesion Image Segmentation (피부병변 영상 분할의 성능향상을 위한 VmCUnet)

  • Hong-Jin Kim;Tae-Hee Lee;Woo-Sung Hwang;Myung-Ryul Choi
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.405-411
    • /
    • 2024
  • In this paper, we have proposed VmCUnet, a deep learning model designed to enhance image segmentation performance in skin lesion image. VmCUnet has combined Vm-UnetV2 with the CIM(Cross-Scale Interaction Module), and the features extracted from each layer of the encoder have been integrated through CIM to accurately recognize the boundaries of various patterns and objects. VmCUnet has performed image segmentation of skin lesions using ISIC-2017 and ISIC-2018 datasets and has outperformed Unet, TransUnet, SwinUnet, Vm-Unet, and Vm-UnetV2 on the performance metrics IoU and Dice Score. In future work, we will conduct additional experiments on different medical imaging datasets to validate the generalization performance of the VmCUnet model.

Model Type Inference Attack against AI-Based NIDS (AI 기반 NIDS에 대한 모델 종류 추론 공격)

  • Yoonsoo An;Dowan Kim;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.875-884
    • /
    • 2024
  • The proliferation of IoT networks has led to an increase in cyber attacks, highlighting the importance of Network Intrusion Detection Systems (NIDS). To overcome the limitations of traditional NIDS and cope with more sophisticated cyber attacks, there is a trend towards integrating artificial intelligence models into NIDS. However, AI-based NIDS are vulnerable to adversarial attacks, which exploit the weaknesses of algorithm. Model Type Inference Attack is one of the types of attacks that infer information inside the model. This paper proposes an optimized framework for Model Type Inference attacks against NIDS models, applying more realistic assumptions. The proposed method successfully trained an attack model to infer the type of NIDS models with an accuracy of approximately 0.92, presenting a new security threat to AI-based NIDS and emphasizing the importance of developing defence method against such attacks.

A Study on a Real-Time Aerial Image-Based UAV-USV Cooperative Guidance and Control Algorithm (실시간 항공영상 기반 UAV-USV 간 협응 유도·제어 알고리즘 개발)

  • Do-Kyun Kim;Jeong-Hyeon Kim;Hui-Hun Son;Si-Woong Choi;Dong-Han Kim;Chan Young Yeo;Jong-Yong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.5
    • /
    • pp.324-333
    • /
    • 2024
  • This paper focuses on the cooperation between Unmanned Aerial Vehicle (UAV) and Unmanned Surface Vessel (USV). It aims to develop efficient guidance and control algorithms for USV based on obstacle identification and path planning from aerial images captured by UAV. Various obstacle scenarios were implemented using the Robot Operating System (ROS) and the Gazebo simulation environment. The aerial images transmitted in real-time from UAV to USV are processed using the computer vision-based deep learning model, You Only Look Once (YOLO), to classify and recognize elements such as the water surface, obstacles, and ships. The recognized data is used to create a two-dimensional grid map. Algorithms such as A* and Rapidly-exploring Random Tree star (RRT*) were used for path planning. This process enhances the guidance and control strategies within the UAV-USV collaborative system, especially improving the navigational capabilities of the USV in complex and dynamic environments. This research offers significant insights into obstacle avoidance and path planning in maritime environments and proposes new directions for the integrated operation of UAV and USV.

Syllable-Level Lightweight Korean POS Tagger using Transformer Encoder (트랜스포머 인코더를 활용한 음절 단위 경량화 형태소 분석기)

  • Suyoung Min;Youngjoong Ko
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.553-558
    • /
    • 2024
  • Morphological analysis involves segmenting morphemes, the smallest units of meaning or grammatical function in a language, and assigning part-of-speech tags to each morpheme. It plays a critical role in various natural language processing tasks, such as named entity recognition and dependency parsing. Much of modern natural language processing relies on deep learning-based language models, and Korean morphological analysis can be broadly categorized into sequence-to-sequence methods and sequential labeling methods. This study proposes a morphological analysis approach using the transformer encoder for sequential labeling to perform syllable-level part-of-speech tagging, followed by morpheme restoration and tagging through a pre-analyzed dictionary. Additionally, the CBOW method was used to extract syllable-level embeddings in lower dimensions, designing a lightweight morphological analyzer model with reduced parameters. The proposed model achieves fast inference speed and low parameter usage, making it efficient for use in resource-constrained environments.

A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle (상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구)

  • Kim, JunSeob;Rim, BeanBonyka;Sung, Nak-Jun;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2020
  • Biometric information indicating measurement items related to human characteristics has attracted great attention as security technology with high reliability since there is no fear of theft or loss. Among these biometric information, fingerprints are mainly used in fields such as identity verification and identification. If there is a problem such as a wound, wrinkle, or moisture that is difficult to authenticate to the fingerprint image when identifying the identity, the fingerprint expert can identify the problem with the fingerprint directly through the preprocessing step, and apply the image processing algorithm appropriate to the problem. Solve the problem. In this case, by implementing artificial intelligence software that distinguishes fingerprint images with cuts and wrinkles on the fingerprint, it is easy to check whether there are cuts or wrinkles, and by selecting an appropriate algorithm, the fingerprint image can be easily improved. In this study, we developed a total of 17,080 fingerprint databases by acquiring all finger prints of 1,010 students from the Royal University of Cambodia, 600 Sokoto open data sets, and 98 Korean students. In order to determine if there are any injuries or wrinkles in the built database, criteria were established, and the data were validated by experts. The training and test datasets consisted of Cambodian data and Sokoto data, and the ratio was set to 8: 2. The data of 98 Korean students were set up as a validation data set. Using the constructed data set, five CNN-based architectures such as Classic CNN, AlexNet, VGG-16, Resnet50, and Yolo v3 were implemented. A study was conducted to find the model that performed best on the readings. Among the five architectures, ResNet50 showed the best performance with 81.51%.

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.