• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.037 seconds

Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection (다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법)

  • Kim, Jee-Hyun;Lee, Seyoung;Kim, Yerim;Ahn, Seo-Yeong;Park, Saerom
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF

A Study on Information Expansion of Neighboring Clusters for Creating Enhanced Indoor Movement Paths (향상된 실내 이동 경로 생성을 위한 인접 클러스터의 정보 확장에 관한 연구)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.264-266
    • /
    • 2022
  • In order to apply the RNN model to the radio fingerprint-based indoor path generation technology, the data set must be continuous and sequential. However, Wi-Fi radio fingerprint data is not suitable as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, continuity information of sequential positions should be given. For this purpose, clustering is possible through classification of each region based on signal data. At this time, the continuity information between the clusters does not contain information on whether actual movement is possible due to the limitation of radio signals. Therefore, correlation information on whether movement between adjacent clusters is possible is required. In this paper, a deep learning network, a recurrent neural network (RNN) model, is used to predict the path of a moving object, and it reduces errors that may occur when predicting the path of an object by generating continuous location information for path generation in an indoor environment. We propose a method of giving correlation between clustering for generating an improved moving path that can avoid erroneous path prediction that cannot move on the predicted path.

  • PDF

Lightweight Attention-Guided Network with Frequency Domain Reconstruction for High Dynamic Range Image Fusion

  • Park, Jae Hyun;Lee, Keuntek;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.205-208
    • /
    • 2022
  • Multi-exposure high dynamic range (HDR) image reconstruction, the task of reconstructing an HDR image from multiple low dynamic range (LDR) images in a dynamic scene, often produces ghosting artifacts caused by camera motion and moving objects and also cannot deal with washed-out regions due to over or under-exposures. While there has been many deep-learning-based methods with motion estimation to alleviate these problems, they still have limitations for severely moving scenes. They also require large parameter counts, especially in the case of state-of-the-art methods that employ attention modules. To address these issues, we propose a frequency domain approach based on the idea that the transform domain coefficients inherently involve the global information from whole image pixels to cope with large motions. Specifically we adopt Residual Fast Fourier Transform (RFFT) blocks, which allows for global interactions of pixels. Moreover, we also employ Depthwise Overparametrized convolution (DO-conv) blocks, a convolution in which each input channel is convolved with its own 2D kernel, for faster convergence and performance gains. We call this LFFNet (Lightweight Frequency Fusion Network), and experiments on the benchmarks show reduced ghosting artifacts and improved performance up to 0.6dB tonemapped PSNR compared to recent state-of-the-art methods. Our architecture also requires fewer parameters and converges faster in training.

  • PDF

Design and Implementation of Dangerous of Image Recognition based Cup Contamination Measurement System (이미지 인식 기반의 컵 오염 여부 측정 시스템의 설계 및 구현)

  • Lee, Taejun;Chae, Heeseok;Lee, Sangwon;Kim, Jaemin;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.213-215
    • /
    • 2022
  • Recently, deep learning technology that processes images has been widely used in fire detection, autonomous driving, and defective product detection. In particular, in order to determine whether a product is contaminated or not, it can be identified through the contaminants passed from the existing sensor data, but technologies for recognizing cracks in products or contaminants themselves as images are being actively studied in various fields. In this paper, a system for classifying uncontaminated normal cups and contaminated cups through images was designed and implemented. The image was analyzed using an open image and a photographed image, and the image was analyzed by extracting the upper part of the cup image using Google Objectron for 3D object recognition. Through this study, it is thought that it will be used in various ways for research that can extract the contamination level of products required in the hygiene field based on images.

  • PDF

Correlation Extraction from KOSHA to enable the Development of Computer Vision based Risks Recognition System

  • Khan, Numan;Kim, Youjin;Lee, Doyeop;Tran, Si Van-Tien;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.87-95
    • /
    • 2020
  • Generally, occupational safety and particularly construction safety is an intricate phenomenon. Industry professionals have devoted vital attention to enforcing Occupational Safety and Health (OHS) from the last three decades to enhance safety management in construction. Despite the efforts of the safety professionals and government agencies, current safety management still relies on manual inspections which are infrequent, time-consuming and prone to error. Extensive research has been carried out to deal with high fatality rates confronting by the construction industry. Sensor systems, visualization-based technologies, and tracking techniques have been deployed by researchers in the last decade. Recently in the construction industry, computer vision has attracted significant attention worldwide. However, the literature revealed the narrow scope of the computer vision technology for safety management, hence, broad scope research for safety monitoring is desired to attain a complete automatic job site monitoring. With this regard, the development of a broader scope computer vision-based risk recognition system for correlation detection between the construction entities is inevitable. For this purpose, a detailed analysis has been conducted and related rules which depict the correlations (positive and negative) between the construction entities were extracted. Deep learning supported Mask R-CNN algorithm is applied to train the model. As proof of concept, a prototype is developed based on real scenarios. The proposed approach is expected to enhance the effectiveness of safety inspection and reduce the encountered burden on safety managers. It is anticipated that this approach may enable a reduction in injuries and fatalities by implementing the exact relevant safety rules and will contribute to enhance the overall safety management and monitoring performance.

  • PDF

Efficient Data Preprocessing Scheme for Audio Deep Learning in Solar-Powered IoT Edge Computing Environment (태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 데이터 전처리 기법)

  • Yeon-Tae Yoo;Chang-Han Lee;Seok-Mun Heo;Na-Kyung You;Ki-Hoon Kim;Chan-Seo Lee;Dong-Kun Noh
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.81-83
    • /
    • 2023
  • 태양 에너지 수집형 IoT 기기는 주기적으로 재충전되는 태양 에너지의 특성상, 에너지 소모를 최소화하기보다는 수집된 에너지를 최대한 유용하게 사용하는 것이 중요하다. 한편, 데이터 기밀성과 프라이버시, 응답속도, 비용 등의 이유로 클라우드가 아닌 데이터 소스 근처에서 머신러닝을 수행하는 엣지 AI에 대한 연구도 활발한데, 그 중 하나는 여러 IoT 장치들이 수집한 오디오 데이터를 활용하여, 다양한 AI 응용들을 IoT 엣지 컴퓨팅 환경에서 제공하는 것이다. 그러나, 이와 관련된 많은 연구에서, IoT 기기들은 에너지의 제약으로 인하여, 엣지 서버(IoT 서버)로의 센싱 데이터 전송만을 수행하고, 데이터 전처리를 포함한 모든 AI 과정은 엣지 서버에서 수행한다. 이 경우, 엣지 서버의 과부하 문제 뿐 아니라, 학습 및 추론에 불필요한 데이터까지도 서버에 그대로 전송되므로 네트워크 과부하 문제도 야기한다. 또한, 이를 해결하고자, 데이터 전처리 과정을 각 IoT 기기에 모두 맡긴다면, 기기의 에너지 부족으로 정전시간이 증가하는 또 다른 문제가 발생한다. 본 논문에서는 각 IoT 기기의 에너지 상태에 따라 데이터 전처리 여부를 결정함으로써, 기기들의 정전시간 증가 문제를 완화시키면서 서버 집중형 엣지 AI 환경의 문제들(엣지 서버 및 네트워크 과부하)을 완화시키고자 한다. 제안기법에서 IoT 장치는 기기가 기본적으로 동작하는 데 필요한 에너지 외의 여분의 에너지 양을 예측하고, 이 여분의 에너지가 있는 경우에만 이를 사용하여 기기에서 전처리 과정, 즉 수집 대상 소리 판별과 잡음 제거 과정을 거친 후 서버에 전송함으로써, IoT기기의 정전시간에 영향을 주지 않으면서, 에너지 적응적으로 데이터 전처리 위치(IoT기기 또는 엣지 서버)를 결정하여 수행한다.

Prediction of pathological complete response in rectal cancer using 3D tumor PET image (3차원 종양 PET 영상을 이용한 직장암 치료반응 예측)

  • Jinyu Yang;Kangsan Kim;Ui-sup Shin;Sang-Keun Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.63-65
    • /
    • 2023
  • 본 논문에서는 FDG-PET 영상을 사용하는 딥러닝 네트워크를 이용하여 직장암 환자의 치료 후 완치를 예측하는 연구를 수행하였다. 직장암은 흔한 악성 종양 중 하나이지만 병리학적으로 완전하게 치료되는 가능성이 매우 낮아, 치료 후의 반응을 예측하고 적절한 치료 방법을 선택하는 것이 중요하다. 따라서 본 연구에서는 FDG-PET 영상에 합성곱 신경망(CNN)모델을 활용하여 딥러닝 네트워크를 구축하고 직장암 환자의 치료반응을 예측하는 연구를 진행하였다. 116명의 직장암 환자의 FDG-PET 영상을 획득하였다. 대상군은 2cm 이상의 종양 크기를 가지는 환자를 대상으로 하였으며 치료 후 완치된 환자는 21명이었다. FDG-PET 영상은 전신 영역과 종양 영역으로 나누어 평가하였다. 딥러닝 네트워크는 2차원 및 3차원 영상입력에 대한 CNN 모델로 구성되었다. 학습된 CNN 모델을 사용하여 직장암의 치료 후 완치를 예측하는 성능을 평가하였다. 학습 결과에서 평균 정확도와 정밀도는 각각 0.854와 0.905로 나타났으며, 모든 CNN 모델과 영상 영역에 따른 성능을 보였다. 테스트 결과에서는 3차원 CNN 모델과 종양 영역만을 이용한 네트워크에서 정확도가 높게 평가됨을 확인하였다. 본 연구에서는 CNN 모델의 입력 영상에 따른 차이와 영상 영역에 따른 딥러닝 네트워크의 성능을 평가하였으며 딥러닝 네트워크 모델을 통해 직장암 치료반응을 예측하고 적절한 치료 방향 결정에 도움이 될 것으로 기대한다.

  • PDF

Dr. Vegetable: an AI-based Mobile Application for Diagnosis of Plant Diseases and Insect Pests (농작물 병해충 진단을 위한 인공지능 앱, Dr. Vegetable)

  • Soohwan Kim;DaeKy Jeong;SeungJun Lee;SungYeob Jung;DongJae Yang;GeunyEong Jeong;Suk-Hyung Hwang;Sewoong Hwang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.457-460
    • /
    • 2023
  • 본 연구는 시설작물의 병충해 진단을 위해 딥러닝 모델을 응용한 인공지능 서비스 앱, Dr. Vegetable을 제안하고자 한다. 농업 현장에서 숙련된 농부는 한눈에 농작물의 병충해를 판단할 수 있지만 미숙련된 농부는 병충해 피해를 발견하더라도 그 종류와 해결 방법을 찾아내기가 매우 어렵다. 또한 아무리 숙련된 농부라고 할지라도 육안검사만으로 병충해를 조기에 발견하는 것은 쉽지 않다. 한편 시설작물의 경우 병충해에 의한 연쇄피해가 발생할 우려가 있으므로 병충해의 조기 발견 및 방제가 매우 중요하다. 즉, 농부의 경험에 따른 농작물 병해충 진단은 정확성을 장담할 수 없으며 비용과 시간적인 측면에서 위험성이 높다고 할 수 있다. 본 논문에서는 YOLOv5를 활용하여 상추, 고추, 토마토 등 농작물의 병충해를 진단하는 인공지능 서비스를 제안한다. 특히 한국지능정보사회진흥원이 운영하고 있는 AI 통합 플랫폼인 AI 허브에서 제공하는 노지 작물 질병 및 해충 진단 이미지를 사용하여 딥러닝 모델을 학습하였다. 본 연구를 통해 개발된 모바일 어플리케이션을 이용하여 실제 시설농장에서 병충해 진단 서비스를 적용한 결과 약 86%의 정확도, F1 Score 0.84, 그리고 0.98의 mAP 값을 얻을 수 있었다. 본 연구에서 개발한 병충해 진단 딥러닝 모델을 다양한 조도에서 강인하게 동작하도록 개선한다면 농업 현장에서 널리 활용될 수 있을 것으로 기대한다.

  • PDF

Research on Pothole Detection using Feature-Level Ensemble of Pretrained Deep Learning Models (사전 학습된 딥러닝 모델들의 피처 레벨 앙상블을 이용한 포트홀 검출 기법 연구)

  • Ye-Eun Shin;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.35-38
    • /
    • 2023
  • 포트홀은 주행하는 자동차와 접촉이 이뤄지면 차체나 운전자에게 충격을 주고 제어를 잃게 하여 도로 위 안전을 위협할 수 있다. 포트홀의 검출을 위한 국내 동향으로는 진동을 이용한 방식과 신고시스템 이용한 방식과 영상 인식을 기반한 방식이 있다. 이 중 영상 인식 기반 방식은 보급이 쉽고 비용이 저렴하나, 컴퓨터 비전 알고리즘은 영상의 품질에 따라 정확도가 달라지는 문제가 있었다. 이를 보완하기 위해 영상 인식 기반의 딥러닝 모델을 사용한다. 따라서, 본 논문에서는 사전 학습된 딥러닝 모델의 정확도 향상을 위한 Feature Level Ensemble 기법을 제안한다. 제안된 기법은 사전 학습된 CNN 모델 중 Test 데이터의 정확도 기준 Top-3 모델을 선정하여 각 딥러닝 모델의 Feature Map을 Concatenate하고 이를 Fully-Connected(FC) Layer로 입력하여 구현한다. Feature Level Ensemble 기법이 적용된 딥러닝 모델은 평균 대비 3.76%의 정확도 향상을 보였으며, Top-1 모델인 ShuffleNet보다 0.94%의 정확도 향상을 보였다. 결론적으로 본 논문에서 제안된 기법은 사전 학습된 모델들을 이용하여 각 모델의 다양한 특징을 통해 기존 모델 대비 정확도의 향상을 이룰 수 있었다.

  • PDF

Multi-Class Multi-Object Tracking in Aerial Images Using Uncertainty Estimation

  • Hyeongchan Ham;Junwon Seo;Junhee Kim;Chungsu Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.115-122
    • /
    • 2024
  • Multi-object tracking (MOT) is a vital component in understanding the surrounding environments. Previous research has demonstrated that MOT can successfully detect and track surrounding objects. Nonetheless, inaccurate classification of the tracking objects remains a challenge that needs to be solved. When an object approaching from a distance is recognized, not only detection and tracking but also classification to determine the level of risk must be performed. However, considering the erroneous classification results obtained from the detection as the track class can lead to performance degradation problems. In this paper, we discuss the limitations of classification in tracking under the classification uncertainty of the detector. To address this problem, a class update module is proposed, which leverages the class uncertainty estimation of the detector to mitigate the classification error of the tracker. We evaluated our approach on the VisDrone-MOT2021 dataset,which includes multi-class and uncertain far-distance object tracking. We show that our method has low certainty at a distant object, and quickly classifies the class as the object approaches and the level of certainty increases.In this manner, our method outperforms previous approaches across different detectors. In particular, the You Only Look Once (YOLO)v8 detector shows a notable enhancement of 4.33 multi-object tracking accuracy (MOTA) in comparison to the previous state-of-the-art method. This intuitive insight improves MOT to track approaching objects from a distance and quickly classify them.