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Abstract: Multi-object tracking (MOT) is a vital component in understanding the surrounding environ -
ments. Previous research has demonstrated that MOT can successfully detect and track surrounding
objects. Nonetheless, inaccurate classification of the tracking objects remains a challenge that needs to be
solved. When an object approaching from a distance is recognized, not only detection and tracking but
also classification to determine the level of risk must be performed. However, considering the erroneous
classification results obtained from the detection as the track class can lead to performance degradation
problems. In this paper, we discuss the limitations of classification in tracking under the classification
uncertainty of the detector. To address this problem, a class update module is proposed, which leverages
the class uncertainty estimation of the detector to mitigate the classification error of the tracker. We
evaluated our approach on the VisDrone-MOT2021 dataset, which includes multi-class and uncertain far-
distance object tracking. We show that our method has low certainty at a distant object, and quickly
classifies the class as the object approaches and the level of certainty increases. In this manner, our method
outperforms previous approaches across different detectors. In particular, the You Only Look Once
(YOLO)v8 detector shows a notable enhancement of 4.33 multi-object tracking accuracy (MOTA) in
comparison to the previous state-of-the-art method. This intuitive insight improves MOT to track
approaching objects from a distance and quickly classify them.
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1. Introduction

Multi-object tracking (MOT) is mostly used in computer vision
tasks such as military, surveillance, robotics, and smart cities. The
goal of the MOT is the surveillance to recognize and classify
distant objects and to identify potential threats. The MOT model
tracks objects based on the association between previously
tracked objects and newly detected objects. Most MOT models
(Bewley et al., 2016; Wojke et al., 2017; Aharon et al., 2022; Du et
al., 2021) have utilized the Hungarian algorithm (Kuhn et al.,
1955) with the Kalman filter (Kalman et al., 1960) and the Re-

Identification (ReID) appearance model (Luo et al., 2019; He et
al., 2021) to establish the association. The Hungarian algorithm
utilizes a cost matrix to establish associations between tracked
and detected objects. The position or appearance information of
the objects composes the cost matrix which is formed by the
Kalman filter and the ReID appearance model. The Kalman filter
updates and predicts positional information to associate between
tracked and detected objects. The ReID appearance model can
be applied to compare the appearance between tracked and
detected objects for the association. This tracking process is
generally used for single-class datasets like MOT17 (Milan et al.,
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2016), which consists of pedestrians.
The rapid identification and classification of the potential

threats that are approaching from a distance are crucial in the
surveillance (Araujo et al., 2019). While traditional MOT methods
have shown effectiveness in single-class MOT tasks like the
MOT17 dataset, they encounter considerable challenges in multi-
class MOT tasks. Quasi-Dense tracking (QDTrack) (Fischer et
al., 2022) demonstrated that a naïve tracking approach cannot
handle misclassified detections for the multi-class MOT task. The
most straightforward approach is to extend the single-class MOT
process (Wang et al., 2020; Zhou et al., 2020; Zhang et al., 2021)
to each class.

The extension of the single-class MOT process iterates through
each class and associates tracks and detections within each class.
This class-by-class approach predicates the perfect classification
with an oracle detector to consistently track the objects. Previous
works enhance the feature extraction of the object detector to
improve the detection performance in the aerial images (Zhao et
al., 2023; Zhu et al., 2023). Nonetheless, the object detection
models still accompany errors in the classification. In particular,
distinguishing object classes of distant and tiny objects is more
challenging (Wang et al., 2021), as depicted in Fig. 1.

The VisDrone dataset (Chen et al., 2021), which is collected
from a high altitude and captures a far field of view, suffers from
these problems. Wrongly classified detections cannot be matched
to the tracks of another class. Thus inaccurate classification results
in both false positives and false negatives. Track fragmentation
and redundant tracklets occur after this misclassified frame
(Fischer et al., 2022). The threat level classification is not successful
until the object reaches a proximity that allows for its clear

identification. To track approaching objects from a distance, this
problem needs to be solved. Therefore, the tracker must address
the classification uncertainty to quickly and adaptively recognize
the objects.

The existing multi-class MOT methods are sub-optimal when
it comes to addressing uncertain classification issues in the object
detector. In previous works, voting methods (Aharon et al., 2022;
Du et al., 2021) have been adopted to address the classification
errors that occur when detecting small objects at a distance.
These voting methods ensemble classification results from the
detection model output of each frame.

Each of the following voting methods infers the most appropriate
category for the current timestamp based on their strategy. The
hard voting method (Aharon et al., 2022) infers the current class
by counting the number of classes during the current frame and
choosing the majority class. The soft voting method (Du et al.,
2021) differs from the hard voting method in that it works using
the detection probability for each frame. It uses the confidence
score obtained from the object detection model for the weighted
voting method. The confidence score obtained from the object
detector indicates the probability of the presence of an object
within the bounding box (Redmon et al., 2016).

In other words, the confidence score reflects the objectness 
of detection rather than the class uncertainty score, making it 
an unsuitable metric for measuring class confidence level. The
voting method using objectness scores results in the accumulation
of inaccurately predicted class information since the objectness
score which is used as weights for voting is irrelevant to the
classification. Even if the correct classification is made, it will take
time to compensate for the previous errors. As shown in Fig. 1,

Fig. 1. In the depicted figure, objects located at a distance appear significantly tiny and are challenging to distinguish, a common characteristic
observed in aerial images. This results in a notable class uncertainty for these distant objects. As the sequence progresses, the drone camera approaches
the object and leads to an increase in its apparent size and clarity. The enhanced resolution and detail as the camera approaches confirm the object
as a car, concurrently reducing the associated uncertainty.



distant small objects have low-class probabilities even though it
is certain that they exist. Therefore, these objects can be detected
with the correct bounding box and the wrong classification.
Given the aforementioned considerations, It is important to
propose a new approach for rapid class adaptation.

In this paper, we resolve the class uncertainty problem in a
multi-class MOT task using an uncertainty-weighted voting
approach. The multi-class association method is employed to
maintain the tracklet even though the detection results in an
incorrect classification. We also propose the class update module
that incorporates classification uncertainty as a voting weight. By
applying the proposed method, the classification score collected
from the uncertain classification has a small weight for voting,
whereas the definite classification has a high weight for voting.
Experiments conducted on the VisDrone-MOT dataset (Chen et
al., 2021) show that weighted voting with classification uncertainty
leads to improved tracking accuracy. Furthermore, our method
has rapid adaptation for the uncertain classification.

2. Materials and Methods

The objective of our study is to address the challenge of uncertain
classification in multi-class MOT by incorporating an extra class

update module in addition to the classification of the existing
detection model (Jocher et al., 2022; 2023). We first formulate 
the single-class MOT task (Aharon et al., 2022). Thereafter, we
expand it to multi-class MOT by introducing a multi-class
association method, and multi-class update module. We compare
our class update method with the previous multi-class MOT
methods (Aharon et al., 2022; Du et al., 2021). The overall pipeline
is shown in Fig. 2.

2.1. Revisiting Multi-Object Tracker
Most single-class MOT components are similar to those of multi-
class, as depicted in Fig. 2(a), except for the association module
component. Both multi-object trackers process successive frames.
The input frame passes an off-the-shelf object detector, which
returns detection results consisting of bounding boxes, classifi -
cation scores, and confidence scores. The association module
computes the similarity cost matrix between these detection
results and the current tracking objects. Subsequently, a Hungarian
assignment (Kuhn et al., 1955) is conducted to match the tracks
and detection results using the similarity cost matrix. There are
three types of outputs after the matching between the tracks and
detection results; matched track-detections, unmatched detections,
and unmatched tracks. Matched track-detections are assigned
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Fig. 2. Illustration of the proposed multi-class multi-object tracking model. (a) describes overall architectures. (b) shows the matching stage of the
association module and its results are matched track-detections (update track), unmatched detections (new track), and unmatched tracks (exit track).
For the matched tracks, the update module is applied with matched detections as shown in (c). One box represents the detection result of each frame
with the probability of each class, and T indicates the current frame. The class update module computes the weighted probability for each frame,
considering the uncertainty weight.

http://kjrs.or.kr


with the high similarity cost matrix and this matched detection
will extend the track after the update step. The update step
includes position, appearance, and class information updates.

Unmatched detections are the detections except the matched
detections. They are considered as the emergence of new objects
and become new tracks. Unmatched tracks are the tracks except
the matched tracks. They indicate that the tracks are no longer
tracked and disappeared so they will be removed in the exit step.
Our method focuses on the class update of the matched track
detections. The information of the matched track detections is
updated by the detection results obtained from the current frame.
While association and update within the same class for single-
class MOT are naïve, they become non-trivial in the context of
the multi-class MOT. Therefore, we introduce a new association
method.

2.2. Multi-Class Association Method
In contrast to the single-class MOT, the multi-class MOT utilizes
the class-agnostic association methods. In most MOT tasks,
position and appearance information are used as similarity costs
to match tracked and detected objects in the current frame. 
The single-class MOT does not need to consider classes for the
association because every detection and track has the same 
class. However, association within the same class is not optimal
for the multi-class MOT. The classification of the detector always
involves errors and these errors lead to the wrong track creation.
Therefore, we use a class-agnostic association method to give a
chance for wrong classification cases, which is depicted in Fig.
2(b). This class-agnostic method utilizes only position and
appearance information for association. The misclassified object
does not create a false positive track because misclassification
does not affect association.

2.3. Track Class Update Method
The concept of class uncertainty is utilized to update tracking
information of associated objects. After the association module,
there are three types of results: matched tracks, unmatched
detections, and unmatched tracks. For the matched tracks, they
need to update track information with the detection result of 
the current frame. As shown in Fig. 2(c), the track class update
method is used to update class information in addition to the
position and appearance information from the new frame. The
uncertainty method, proposed in this paper, is weighted voting
with classification uncertainty estimation. As shown in Fig. 1, the
classification of distant small objects can be challenging.

In this case, the classification result is unreliable; therefore, we
should slightly consider the detection class for the track class.
This unreliable detection class has a small weight. Conversely, 
as the object comes closer and can be recognized clearly, 
its weight should be increased. The entropy quantifies this
uncertainty and it becomes smaller as it is more certain. The
reciprocal of entropy (Joshi et al., 2009) can be used to represent
class uncertainty as a tracking class weight. The following formula
represents uncertainty weight w,

w = = –                                                             (1)

where pc is the probability for class c, and the entropy E is the
negative value of the weighted sum of these probabilities.
According to information theory (Bishop, 2006), entropy is
maximized when the probability is uniform and minimized
when its distribution is sharp. When the object is confused as
multiple classes, it has a high uncertainty. Whereas when it is
confidently classified as a certain class, it has a low uncertainty.
Therefore it is appropriate to consider the reciprocal of entropy
as a voting weight when determining the class of a track. The
classification probability obtained from each frame is used to
compute the uncertainty weight, and predicts the class of the
current track as follows:

C = ( wt · pc, t)                                                            (2)

where pc, t is the probability of the object for class c at frame t and
wt is the uncertainty weight at frame t. T is the current frame.

3. Results

3.1. Dataset Description
The proposed method is evaluated on the VisDrone-MOT2021
(Chen et al., 2021) dataset. The VisDrone dataset is mostly used
as a benchmark for unmanned aerial vehicle (UAV) surveillance
models. The data are captured using UAV drones and are publicly
available. It includes 96 video sequences, 56 training datasets 
with 24,201 frames, 7 validation datasets with 2,819 frames, 
and 33 test datasets with 12,968 frames. The dataset covers 10
categories; pedestrian, people, bicycle, car, van, truck, tricycle,
awning-tricycle, bus, and motor. This experiment focuses on 
the classification ability of a track. To reduce class imbalance
problems with other classes, we sampled four classes, car, van,
truck, and bus, which are in vehicle categories with similar

1
E

1
Σc pc log(pc)

argmax
c

T
∑
t
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appearances, thus classification ambiguity may occur.

3.2. Evaluation Metrics
To assess the effectiveness of MOT, the evaluation metrics
employed are Multi-Object Tracking Accuracy (MOTA) and
IDentification F1 score (IDF1) (Bernardin et al., 2008). MOTA
measures the accuracy of the detected bounding box and is
penalized by the detection error and tracking ID switches. MOTA
is computed as follows:

MOTA = 1 –                                                   (3)

where false positive (FP) and false negative (FN) are the number
of unmatched predictions and unmatched ground truth.
Ground-truth (GT) is the number of labeled objects in the
datasets and ID switch (IDs) is the number of track ID switches
for each object. A higher MOTA indicates a more accurate
tracker and MOTA value is decreased as the error occurs.

A negative value of the MOTA means it has more errors than
the number of ground-truth. For multi-class MOT, the total
MOTA is computed by class-agnostic measurement. We reported
the MOTA for each class and the average MOTA value of all
classes (Avg). Also, the IDF1 metric is mostly used for the MOT
task. Compared to the MOTA metric, which focuses on detection
accuracy, IDF1 more focuses on the identification of tracking
objects. IDF1 is computed as follows:

IDF1 =                                           (4)

3.3. Implementation Details
The object detection model in the tracker used You Only Look

Once (YOLO)v5L (Jocher et al., 2022) and YOLOv8L (Jocher et
al., 2023) models. The association algorithm followed Aharon et
al. (2022). To compensate for the tracking error from camera
movement, we used the camera motion compensation module
(Aharon et al., 2022). The training optimizer for the detection
model is stochastic gradient descent (SGD) with an initial learning
rate of 1e-4 and 10 times descent at 60 epochs. The training data
was from the VisDrone-MOT and VisDrone-DET training splits.
The training input images were resized to 1,580 pixels to detect
small objects. The inference input images were resized to 2016
and test-time augmentation was not applied. We used four
NVIDIA 2,080ti GPUs with batch size four. We implemented 100
training epochs.

3.4. Experiment Results
3.4.1. Effectiveness of the Proposed Module

We applied some class update modules for the same detector and
tracker in the VisDrone-MOT2021 dataset. As shown in Table 1,
our uncertainty-based class update module with the YOLOv5L
detector had a 3.04 higher MOTA compared to the soft-voting-
based class update module. Our uncertainty-based method 
gives less weight to high uncertainty and more weight to low
uncertainty for the track class update. In contrast to the soft-
voting method incorporating the objectness score as a weight,
the uncertainty-based method can adaptively track with the
correct category. The MOTA of van, bus, and truck categories 
are increased by 70.27, 6.31, and 10.41 each.

However, the MOTA of the car category decreased to 5.59. The
VisDrone dataset seems to suffer from a class imbalance problem,
and our class update module reduced this problem. The average
MOTA is increased by 20.35. Also, the overall IDF1 decreased to

FP + FN + IDs
GT

2 · IDPrecision · IDRecall
IDPrecision + IDRecall
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Table 1. Tracking results on VisDrone-MOT2021 test-dev dataset (%)

Model Method
MOTA IDF1

Car Van Bus Truck All Avg Car Van Bus Truck All Avg

YOLOv5L

History-Centric 32.79 -123.27 -3.97 5.85 15.53 -22.15 65.58 28.45 54.87 49.61 58.85 49.63

Observation-Centric 36.35 -132.46 8.39 21.71 19.41 -16.50 66.53 30.18 63.02 57.67 60.44 54.35

Hard-Voting 37.70 -111.62 11.84 27.80 23.03 -8.57 68.04 33.39 63.57 59.19 62.45 56.05

Soft-Voting 37.81 -90.58 16.99 28.33 25.11 -1.86 68.43 35.86 64.65 59.57 63.40 57.13

Uncertainty (Ours) 32.22 -20.31 23.30 38.74 28.15 18.49 61.51 38.88 65.49 61.30 59.37 56.80

YOLOv8L

History-Centric 46.21 -72.22 -26.88 28.28 32.84 -6.15 71.07 36.92 57.89 49.87 64.66 53.94

Observation-Centric 47.70 -74.45 -12.89 42.50 35.53 0.72 71.20 36.24 61.45 57.96 65.40 56.71

Hard-Voting 48.92 -59.40 1.36 47.94 38.60 9.71 72.35 39.13 64.19 59.81 67.09 58.87

Soft-Voting 49.07 -57.24 5.20 49.29 39.10 11.58 72.46 39.60 65.12 60.31 67.32 59.37

Uncertainty (Ours) 49.01 -11.46 27.86 49.46 43.43 28.72 69.23 41.24 70.81 58.71 65.46 60.00
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4.03. This degradation also comes from the majority number of
car classes, and IDF1 scores of other classes increased using our
method. In a surveillance scenario where numerous objects are
tracked, maintaining the overall tracking ID with a minimum
number of ID switches is more important than the IDF1 score
maintaining one track ID for a long time. We showed the
superiority of the proposed method by keeping the average IDF1
similar to the SOTA method and increasing the average MOTA.

This enhancement in our method comes from the ability of
the rapid adaptability of our class update module. To demonstrate
rapid adaptation, an experiment is conducted to measure the

duration time required for the correct classification. To quantify
the correctly classified time, the first correctly classified time is
divided by the total observation time and gets the average across
all the tested objects. As shown in Table 2, it is evident that our
method can adapt faster compared to other methods.

3.4.2. Visualizations

We present a visual explanation of the white car tracking
mentioned in Fig. 1. The car object has a similar appearance to
the van. Classification score change for each frame is shown in
Fig. 3. When the object is located at a far distance (frame 0 to
100), it is observed as small in size and is difficult to distinguish
whether it is a car or a van. Therefore both car and van class
probability (blue and green line) are small. As it is difficult to
distinguish the category, it has a high uncertainty score (blue
transparent bar), which means it is uncertain. With time, the
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Table 2. Comparison of the duration required to achieve accurate
classification

Method Hard-voting Soft-voting Uncertainty (Ours)

Duration (%) 34.97 34.68 32.99

Fig. 4. The track classification results of the same object in Fig. 3. The true class of this object is the ‘Car’.

Fig. 3. Class probability scores and uncertainty scores change in time. On the x-axis is the frame index and on the y-axis is the probability (uncertainty)
score. This object is depicted in Fig. 1 and the true class of this object is the ‘Car’.



object gradually approaches the camera, increasing in size (frame
250 to 350). As a result, it is feasible to distinguish between a car
and a van, and the class distribution has a high probability for the
car class. With increased car class confidence, the uncertainty has
a lower score compared to the initial state. By considering this
uncertainty score as a weight for the class update method in
multi-class MOT, it can achieve faster and more adaptive target
classification compared to other methods.

The graph of the result of each class update method in the
same object is shown in Fig. 4. The history-centric update
method is constant since it has been assigned to a certain class.
As a result, there is a high probability of misclassification. The
observation-centric update method predicts the class based on
the detection result of each frame. In other words, the highest
classification probability of each frame is selected as a track class.
This method can immediately adapt as the object becomes
recognizable, but it is unstable, and incorrect classification would
occur as soon as it is unrecognizable again. Both hard-voting and
soft-voting methods have the potential to adaptively predict the
class of the track, but they have limitations. The hard-voting
method depends on the number of votes; in other words, the
number of frames. The more incorrectly classified frames that
are observed, the longer it takes to recover the correct class.

In addition, for each frame, hard voting only considers the
highest probability class and ignores the other classes (even
though they are similar but smaller). Soft-voting considers 
all these class probabilities, allowing it to consider all classes.
However, its weight, which is the objectness score, is not
appropriate for the adaptive class update module as it has nothing
to do with class distinction. Our uncertainty-based class update
module demonstrated enhanced performance in predicting track
class adaptively compared to the other methods. Our method
correctly classifies the tracking object 18 frames faster than 
the soft-voting method, which is 750 ms for the 24FPS input.
Considering the neglectable computation overhead of our method,
it is worth for the surveillance field which needs prompt respond
from the threat.

4. Conclusions

In this paper, we propose a class update module concerning class
uncertainty to improve the classification ability of the multi-class
multi-object tracker. This module enables the estimation of class
uncertainty from the object detector. The tracker only reflects 
the detection results for each frame to the extent that it trusts.

Uncertain objects at a distance are less reliable, but when these
objects become more trustworthy, our module is capable of rapid
adaptation to this change. We demonstrated that our method
improves multi-class MOT performance in the VisDrone-MOT
dataset. The main advantage of using uncertainty in tracking 
is enabling the tracking of objects in extensive fields such as
remote sensing even when they exceed the model’s capabilities
by reflecting associated uncertainties. In the future, this approach
can be applied to tasks requiring the reliability of inferences from
models such as multi-view or multi-modal data.
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