• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.03 seconds

Deep learning based crack detection from tunnel cement concrete lining (딥러닝 기반 터널 콘크리트 라이닝 균열 탐지)

  • Bae, Soohyeon;Ham, Sangwoo;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.583-598
    • /
    • 2022
  • As human-based tunnel inspections are affected by the subjective judgment of the inspector, making continuous history management difficult. There is a lot of deep learning-based automatic crack detection research recently. However, the large public crack datasets used in most studies differ significantly from those in tunnels. Also, additional work is required to build sophisticated crack labels in current tunnel evaluation. Therefore, we present a method to improve crack detection performance by inputting existing datasets into a deep learning model. We evaluate and compare the performance of deep learning models trained by combining existing tunnel datasets, high-quality tunnel datasets, and public crack datasets. As a result, DeepLabv3+ with Cross-Entropy loss function performed best when trained on both public datasets, patchwise classification, and oversampled tunnel datasets. In the future, we expect to contribute to establishing a plan to efficiently utilize the tunnel image acquisition system's data for deep learning model learning.

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • This paper has proposed an algorithm that detecting for dense small vehicle in large image efficiently. It is consisted of two Ensemble Deep-Learning Network algorithms based on Coarse to Fine method. The system can detect vehicle exactly on selected sub image. In the Coarse step, it can make Voting Space using the result of various Deep-Learning Network individually. To select sub-region, it makes Voting Map by to combine each Voting Space. In the Fine step, the sub-region selected in the Coarse step is transferred to final Deep-Learning Network. The sub-region can be defined by using dynamic windows. In this paper, pre-defined mapping table has used to define dynamic windows for perspective road image. Identity judgment of vehicle moving on each sub-region is determined by closest center point of bottom of the detected vehicle's box information. And it is tracked by vehicle's box information on the continuous images. The proposed algorithm has evaluated for performance of detection and cost in real time using day and night images captured by CCTV on the road.

A Novel Road Segmentation Technique from Orthophotos Using Deep Convolutional Autoencoders

  • Sameen, Maher Ibrahim;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.423-436
    • /
    • 2017
  • This paper presents a deep learning-based road segmentation framework from very high-resolution orthophotos. The proposed method uses Deep Convolutional Autoencoders for end-to-end mapping of orthophotos to road segmentations. In addition, a set of post-processing steps were applied to make the model outputs GIS-ready data that could be useful for various applications. The optimization of the model's parameters is explained which was conducted via grid search method. The model was trained and implemented in Keras, a high-level deep learning framework run on top of Tensorflow. The results show that the proposed model with the best-obtained hyperparameters could segment road objects from orthophotos at an average accuracy of 88.5%. The results of optimization revealed that the best optimization algorithm and activation function for the studied task are Stochastic Gradient Descent (SGD) and Exponential Linear Unit (ELU), respectively. In addition, the best numbers of convolutional filters were found to be 8 for the first and second layers and 128 for the third and fourth layers of the proposed network architecture. Moreover, the analysis on the time complexity of the model showed that the model could be trained in 4 hours and 50 minutes on 1024 high-resolution images of size $106{\times}106pixels$, and segment road objects from similar size and resolution images in around 14 minutes. The results show that the deep learning models such as Convolutional Autoencoders could be a best alternative to traditional machine learning models for road segmentation from aerial photographs.

Prediction of Asphalt Pavement Service Life using Deep Learning (딥러닝을 활용한 일반국도 아스팔트포장의 공용수명 예측)

  • Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.57-65
    • /
    • 2018
  • PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS : For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS : The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination ($R^2$) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as $R^2$ had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.

Recent Trends of Weakly-supervised Deep Learning for Monocular 3D Reconstruction (단일 영상 기반 3차원 복원을 위한 약교사 인공지능 기술 동향)

  • Kim, Seungryong
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Estimating 3D information from a single image is one of the essential problems in numerous applications. Since a 2D image inherently might originate from an infinite number of different 3D scenes, thus 3D reconstruction from a single image is notoriously challenging. This challenge has been overcame by the advent of recent deep convolutional neural networks (CNNs), by modeling the mapping function between 2D image and 3D information. However, to train such deep CNNs, a massive training data is demanded, but such data is difficult to achieve or even impossible to build. Recent trends thus aim to present deep learning techniques that can be trained in a weakly-supervised manner, with a meta-data without relying on the ground-truth depth data. In this article, we introduce recent developments of weakly-supervised deep learning technique, especially categorized as scene 3D reconstruction and object 3D reconstruction, and discuss limitations and further directions.

Deep Learning based Vehicle AR Manual for Improving User Experience (사용자 경험 향상을 위한 딥러닝 기반 차량용 AR 매뉴얼)

  • Lee, Jeong-Min;Kim, Jun-Hak;Seok, Jung-Won;Park, Jinho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.125-134
    • /
    • 2022
  • This paper implements an AR manual for a vehicle that can be used even in the vehicle interior space where it is difficult to apply the augmentation method of AR content, which is mainly used, and applies a deep learning model to improve the augmentation matching between real space and virtual objects. Through deep learning, the logo of the steering wheel is recognized regardless of the position, angle, and inclination, and 3D interior space coordinates are generated based on this, and the virtual button is precisely augmented on the actual vehicle parts. Based on the same learning model, the function to recognize the main warning light symbols of the vehicle is also implemented to increase the functionality and usability as an AR manual for vehicles.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Multi-view learning review: understanding methods and their application (멀티 뷰 기법 리뷰: 이해와 응용)

  • Bae, Kang Il;Lee, Yung Seop;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.41-68
    • /
    • 2019
  • Multi-view learning considers data from various viewpoints as well as attempts to integrate various information from data. Multi-view learning has been studied recently and has showed superior performance to a model learned from only a single view. With the introduction of deep learning techniques to a multi-view learning approach, it has showed good results in various fields such as image, text, voice, and video. In this study, we introduce how multi-view learning methods solve various problems faced in human behavior recognition, medical areas, information retrieval and facial expression recognition. In addition, we review data integration principles of multi-view learning methods by classifying traditional multi-view learning methods into data integration, classifiers integration, and representation integration. Finally, we examine how CNN, RNN, RBM, Autoencoder, and GAN, which are commonly used among various deep learning methods, are applied to multi-view learning algorithms. We categorize CNN and RNN-based learning methods as supervised learning, and RBM, Autoencoder, and GAN-based learning methods as unsupervised learning.

Knowledge Distillation Based Continual Learning for PCB Part Detection (PCB 부품 검출을 위한 Knowledge Distillation 기반 Continual Learning)

  • Gang, Su Myung;Chung, Daewon;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.868-879
    • /
    • 2021
  • PCB (Printed Circuit Board) inspection using a deep learning model requires a large amount of data and storage. When the amount of stored data increases, problems such as learning time and insufficient storage space occur. In this study, the existing object detection model is changed to a continual learning model to enable the recognition and classification of PCB components that are constantly increasing. By changing the structure of the object detection model to a knowledge distillation model, we propose a method that allows knowledge distillation of information on existing classified parts while simultaneously learning information on new components. In classification scenario, the transfer learning model result is 75.9%, and the continual learning model proposed in this study shows 90.7%.

An Approximate DRAM Architecture for Energy-efficient Deep Learning

  • Nguyen, Duy Thanh;Chang, Ik-Joon
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 2020
  • We present an approximate DRAM architecture for energy-efficient deep learning. Our key premise is that by bounding memory errors to non-critical information, we can significantly reduce DRAM refresh energy without compromising recognition accuracy of deep neural networks. To validate the key premise, we make extensive Monte-Carlo simulations for several well-known convolutional neural networks such as LeNet, ConvNet and AlexNet with the input of MINIST, CIFAR-10, and ImageNet, respectively. We assume that the highest-order 8-bits (in single precision) and 4-bits (in half precision) are protected from retention errors under the proposed architecture and then, randomly inject bit-errors to unprotected bits with various bit-error-rates. Here, recognition accuracies of the above convolutional neural networks are successfully maintained up to the 10-5-order bit-error-rate. We simulate DRAM energy during inference of the above convolutional neural networks, where the proposed architecture shows the possibility of considerable energy saving up to 10 ~ 37.5% of total DRAM energy.