• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.032 seconds

Text Classification by Deep Learning Fusion (딥러닝 융합에 의한 텍스트 분류)

  • Shin, Kwang-Seong;Ham, Seo-Hyun;Shin, Seong-Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.385-386
    • /
    • 2019
  • This paper proposes a fusion model based on Long-Short Term Memory networks (LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification.

  • PDF

Benchmark for Deep Learning based Visual Odometry and Monocular Depth Estimation (딥러닝 기반 영상 주행기록계와 단안 깊이 추정 및 기술을 위한 벤치마크)

  • Choi, Hyukdoo
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.114-121
    • /
    • 2019
  • This paper presents a new benchmark system for visual odometry (VO) and monocular depth estimation (MDE). As deep learning has become a key technology in computer vision, many researchers are trying to apply deep learning to VO and MDE. Just a couple of years ago, they were independently studied in a supervised way, but now they are coupled and trained together in an unsupervised way. However, before designing fancy models and losses, we have to customize datasets to use them for training and testing. After training, the model has to be compared with the existing models, which is also a huge burden. The benchmark provides input dataset ready-to-use for VO and MDE research in 'tfrecords' format and output dataset that includes model checkpoints and inference results of the existing models. It also provides various tools for data formatting, training, and evaluation. In the experiments, the exsiting models were evaluated to verify their performances presented in the corresponding papers and we found that the evaluation result is inferior to the presented performances.

A Study of the Trend of Deep Learning Technology of China (중국의 딥러닝 기술 동향에 관한 연구)

  • Fu, Yumei;Kim, Minyoung;Park, Geunho;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.385-388
    • /
    • 2019
  • In recent years, China has faced unprecedented intelligent reforms. Artificial intelligence has become a hot topic in society. The deep learning framework is the core of artificial intelligence industrialization, and it has also attracted the attention of all parties. Among them, deep learning has been applied in the fields of computer vision, speech recognition, and language technology processing. This paper will introduce China's development status and future challenges in technology, talent, and market applications.

  • PDF

Application of Deep Recurrent Q Network with Dueling Architecture for Optimal Sepsis Treatment Policy

  • Do, Thanh-Cong;Yang, Hyung Jeong;Ho, Ngoc-Huynh
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.48-54
    • /
    • 2021
  • Sepsis is one of the leading causes of mortality globally, and it costs billions of dollars annually. However, treating septic patients is currently highly challenging, and more research is needed into a general treatment method for sepsis. Therefore, in this work, we propose a reinforcement learning method for learning the optimal treatment strategies for septic patients. We model the patient physiological time series data as the input for a deep recurrent Q-network that learns reliable treatment policies. We evaluate our model using an off-policy evaluation method, and the experimental results indicate that it outperforms the physicians' policy, reducing patient mortality up to 3.04%. Thus, our model can be used as a tool to reduce patient mortality by supporting clinicians in making dynamic decisions.

Character Level and Word Level English License Plate Recognition Using Deep-learning Neural Networks (딥러닝 신경망을 이용한 문자 및 단어 단위의 영문 차량 번호판 인식)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • Vehicle license plate recognition system is not generalized in Malaysia due to the loose character layout rule and the varying number of characters as well as the mixed capital English characters and italic English words. Because the italic English word is hard to segmentation, a separate method is required to recognize in Malaysian license plate. In this paper, we propose a mixed character level and word level English license plate recognition algorithm using deep learning neural networks. The difference of Gaussian method is used to segment character and word by generating a black and white image with emphasized character strokes and separated touching characters. The proposed deep learning neural networks are implemented on the LPR system at the gate of a building in Kuala-Lumpur for the collection of database and the evaluation of algorithm performance. The evaluation results show that the proposed Malaysian English LPR can be used in commercial market with 98.01% accuracy.

Grasping Algorithm using Point Cloud-based Deep Learning (점군 기반의 심층학습을 이용한 파지 알고리즘)

  • Bae, Joon-Hyup;Jo, HyunJun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 2021
  • In recent years, much study has been conducted in robotic grasping. The grasping algorithms based on deep learning have shown better grasping performance than the traditional ones. However, deep learning-based algorithms require a lot of data and time for training. In this study, a grasping algorithm using an artificial neural network-based graspability estimator is proposed. This graspability estimator can be trained with a small number of data by using a neural network based on the residual blocks and point clouds containing the shapes of objects, not RGB images containing various features. The trained graspability estimator can measures graspability of objects and choose the best one to grasp. It was experimentally shown that the proposed algorithm has a success rate of 90% and a cycle time of 12 sec for one grasp, which indicates that it is an efficient grasping algorithm.

Implementation of an Autostereoscopic Virtual 3D Button in Non-contact Manner Using Simple Deep Learning Network

  • You, Sang-Hee;Hwang, Min;Kim, Ki-Hoon;Cho, Chang-Suk
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.505-517
    • /
    • 2021
  • This research presented an implementation of autostereoscopic virtual three-dimensional (3D) button device as non-contact style. The proposed device has several characteristics about visible feature, non-contact use and artificial intelligence (AI) engine. The device was designed to be contactless to prevent virus contamination and consists of 3D buttons in a virtual stereoscopic view. To specify the button pressed virtually by fingertip pointing, a simple deep learning network having two stages without convolution filters was designed. As confirmed in the experiment, if the input data composition is clearly designed, the deep learning network does not need to be configured so complexly. As the results of testing and evaluation by the certification institute, the proposed button device shows high reliability and stability.

A Dangerous Situation Recognition System Using Human Behavior Analysis (인간 행동 분석을 이용한 위험 상황 인식 시스템 구현)

  • Park, Jun-Tae;Han, Kyu-Phil;Park, Yang-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.345-354
    • /
    • 2021
  • Recently, deep learning-based image recognition systems have been adopted to various surveillance environments, but most of them are still picture-type object recognition methods, which are insufficient for the long term temporal analysis and high-dimensional situation management. Therefore, we propose a method recognizing the specific dangerous situation generated by human in real-time, and utilizing deep learning-based object analysis techniques. The proposed method uses deep learning-based object detection and tracking algorithms in order to recognize the situations such as 'trespassing', 'loitering', and so on. In addition, human's joint pose data are extracted and analyzed for the emergent awareness function such as 'falling down' to notify not only in the security but also in the emergency environmental utilizations.

A Manually Captured and Modified Phone Screen Image Dataset for Widget Classification on CNNs

  • Byun, SungChul;Han, Seong-Soo;Jeong, Chang-Sung
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • The applications and user interfaces (UIs) of smart mobile devices are constantly diversifying. For example, deep learning can be an innovative solution to classify widgets in screen images for increasing convenience. To this end, the present research leverages captured images and the ReDraw dataset to write deep learning datasets for image classification purposes. First, as the validation for datasets using ResNet50 and EfficientNet, the experiments show that the dataset composed in this study is helpful for classification according to a widget's functionality. An implementation for widget detection and classification on RetinaNet and EfficientNet is then executed. Finally, the research suggests the Widg-C and Widg-D datasets-a deep learning dataset for identifying the widgets of smart devices-and implementing them for use with representative convolutional neural network models.

Lifetime Extension Method for Non-Volatile Memory based Deep Learning System by analyzing Data Write Pattern (데이터 쓰기 패턴 분석을 통한 비휘발성 메모리 기반 딥러닝 시스템의 수명 연장 기법)

  • Choi, Juhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Modern computer systems usually have special hardware for operations used in deep learning workload even edge computing environment. Non-volatile memories (NVMs) have been considered for alternative memory storage because they consume little static energy and occupy small area. However, there is a problem for NVMs to be directly adopted. An NVM cell has limited write endurance, so that the lifetime of NVM-based memory system is much shorter than that of conventional memory system. To overcome this problem for the deep learning system, this paper proposes a novel method to extend the lifetime based on the analysis of the deep learning workloads. If an incoming block has more than a predefined number of frequently used values, the cacheline is defined as write friendly block. During the victim selection, the cacheline has lower possibility to be chosen as victim. The experimental results show that the lifetime is increased by about 50% and energy consumption is decreased by 3% with a little performance hurt.