• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.035 seconds

Failure Detection Method of Industrial Cartesian Coordinate Robots Based on a CNN Inference Window Using Ambient Sound (음향 데이터를 이용한 CNN 추론 윈도우 기반 산업용 직교 좌표 로봇의 고장 진단 기법)

  • Hyuntae Cho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2024
  • In the industrial field, robots are used to increase productivity by replacing labors with dangerous, difficult, and hard tasks. However, failures of individual industrial robots in the entire production process may cause product defects or malfunctions, and may cause dangerous disasters in the case of manufacturing parts used in automobiles and aircrafts. Although requirements for early diagnosis of industrial robot failures are steadily increasing, there are many limitations in early detection. This paper introduces methods for diagnosing robot failures using sound-based data and deep learning. This paper also analyzes, compares, and evaluates the performance of failure diagnosis using various deep learning technologies. Furthermore, in order to improve the performance of the fault diagnosis system using deep learning technology, we propose a method to increase the accuracy of fault diagnosis based on an inference window. When adopting the inference window of deep learning, the accuracy of the failure diagnosis was increased up to 94%.

Pedestrian GPS Trajectory Prediction Deep Learning Model and Method

  • Yoon, Seung-Won;Lee, Won-Hee;Lee, Kyu-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.61-68
    • /
    • 2022
  • In this paper, we propose a system to predict the GPS trajectory of a pedestrian based on a deep learning model. Pedestrian trajectory prediction is a study that can prevent pedestrian danger and collision situations through notifications, and has an impact on business such as various marketing. In addition, it can be used not only for pedestrians but also for path prediction of unmanned transportation, which is receiving a lot of spotlight. Among various trajectory prediction methods, this paper is a study of trajectory prediction using GPS data. It is a deep learning model-based study that predicts the next route by learning the GPS trajectory of pedestrians, which is time series data. In this paper, we presented a data set construction method that allows the deep learning model to learn the GPS route of pedestrians, and proposes a trajectory prediction deep learning model that does not have large restrictions on the prediction range. The parameters suitable for the trajectory prediction deep learning model of this study are presented, and the model's test performance are presented.

Structural Crack Detection Using Deep Learning: An In-depth Review

  • Safran Khan;Abdullah Jan;Suyoung Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.371-393
    • /
    • 2023
  • Crack detection in structures plays a vital role in ensuring their safety, durability, and reliability. Traditional crack detection methods sometimes need significant manual inspections, which are laborious, expensive, and prone to error by humans. Deep learning algorithms, which can learn intricate features from large-scale datasets, have emerged as a viable option for automated crack detection recently. This study presents an in-depth review of crack detection methods used till now, like image processing, traditional machine learning, and deep learning methods. Specifically, it will provide a comparative analysis of crack detection methods using deep learning, aiming to provide insights into the advancements, challenges, and future directions in this field. To facilitate comparative analysis, this study surveys publicly available crack detection datasets and benchmarks commonly used in deep learning research. Evaluation metrics employed to check the performance of different models are discussed, with emphasis on accuracy, precision, recall, and F1-score. Moreover, this study provides an in-depth analysis of recent studies and highlights key findings, including state-of-the-art techniques, novel architectures, and innovative approaches to address the shortcomings of the existing methods. Finally, this study provides a summary of the key insights gained from the comparative analysis, highlighting the potential of deep learning in revolutionizing methodologies for crack detection. The findings of this research will serve as a valuable resource for researchers in the field, aiding them in selecting appropriate methods for crack detection and inspiring further advancements in this domain.

Data Augmentation Techniques of Power Facilities for Improve Deep Learning Performance

  • Jang, Seungmin;Son, Seungwoo;Kim, Bongsuck
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.323-328
    • /
    • 2021
  • Diagnostic models are required. Data augmentation is one of the best ways to improve deep learning performance. Traditional augmentation techniques that modify image brightness or spatial information are difficult to achieve great results. To overcome this, a generative adversarial network (GAN) technology that generates virtual data to increase deep learning performance has emerged. GAN can create realistic-looking fake images by competitive learning two networks, a generator that creates fakes and a discriminator that determines whether images are real or fake made by the generator. GAN is being used in computer vision, IT solutions, and medical imaging fields. It is essential to secure additional learning data to advance deep learning-based fault diagnosis solutions in the power industry where facilities are strictly maintained more than other industries. In this paper, we propose a method for generating power facility images using GAN and a strategy for improving performance when only used a small amount of data. Finally, we analyze the performance of the augmented image to see if it could be utilized for the deep learning-based diagnosis system or not.

DeepSDO: Solar event detection using deep-learning-based object detection methods

  • Baek, Ji-Hye;Kim, Sujin;Choi, Seonghwan;Park, Jongyeob;Kim, Jihun;Jo, Wonkeum;Kim, Dongil
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.46.2-46.2
    • /
    • 2021
  • We present solar event auto detection using deep-learning-based object detection algorithms and DeepSDO event dataset. DeepSDO event dataset is a new detection dataset with bounding boxed as ground-truth for three solar event (coronal holes, sunspots and prominences) features using Solar Dynamics Observatory data. To access the reliability of DeepSDO event dataset, we compared to HEK data. We train two representative object detection models, the Single Shot MultiBox Detector (SSD) and the Faster Region-based Convolutional Neural Network (R-CNN) with DeepSDO event dataset. We compared the performance of the two models for three solar events and this study demonstrates that deep learning-based object detection can successfully detect multiple types of solar events. In addition, we provide DeepSDO event dataset for further achievements event detection in solar physics.

  • PDF

Comparison of value-based Reinforcement Learning Algorithms in Cart-Pole Environment

  • Byeong-Chan Han;Ho-Chan Kim;Min-Jae Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.166-175
    • /
    • 2023
  • Reinforcement learning can be applied to a wide variety of problems. However, the fundamental limitation of reinforcement learning is that it is difficult to derive an answer within a given time because the problems in the real world are too complex. Then, with the development of neural network technology, research on deep reinforcement learning that combines deep learning with reinforcement learning is receiving lots of attention. In this paper, two types of neural networks are combined with reinforcement learning and their characteristics were compared and analyzed with existing value-based reinforcement learning algorithms. Two types of neural networks are FNN and CNN, and existing reinforcement learning algorithms are SARSA and Q-learning.

Dust Prediction System based on Incremental Deep Learning (증강형 딥러닝 기반 미세먼지 예측 시스템)

  • Sung-Bong Jang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.301-307
    • /
    • 2023
  • Deep learning requires building a deep neural network, collecting a large amount of training data, and then training the built neural network for a long time. If training does not proceed properly or overfitting occurs, training will fail. When using deep learning tools that have been developed so far, it takes a lot of time to collect training data and learn. However, due to the rapid advent of the mobile environment and the increase in sensor data, the demand for real-time deep learning technology that can dramatically reduce the time required for neural network learning is rapidly increasing. In this study, a real-time deep learning system was implemented using an Arduino system equipped with a fine dust sensor. In the implemented system, fine dust data is measured every 30 seconds, and when up to 120 are accumulated, learning is performed using the previously accumulated data and the newly accumulated data as a dataset. The neural network for learning was composed of one input layer, one hidden layer, and one output. To evaluate the performance of the implemented system, learning time and root mean square error (RMSE) were measured. As a result of the experiment, the average learning error was 0.04053796, and the average learning time of one epoch was about 3,447 seconds.

A Study on the Accuracy Improvement of One-repetition Maximum based on Deep Neural Network for Physical Exercise

  • Lee, Byung-Hoon;Kim, Myeong-Jin;Kim, Kyung-Seok
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.147-154
    • /
    • 2019
  • In this paper, we conducted a study that utilizes deep learning to calculate appropriate physical exercise information when basic human factors such as sex, age, height, and weight of users come in. To apply deep learning, a method was applied to calculate the amount of fat needed to calculate the amount of one repetition maximum by utilizing the structure of the basic Deep Neural Network. By applying Accuracy improvement methods such as Relu, Weight initialization, and Dropout to existing deep learning structures, we have improved Accuracy to derive a lean body weight that is closer to actual results. In addition, the results were derived by applying a formula for calculating the one repetition maximum load on upper and lower body movements for use in actual physical exercise. If studies continue, such as the way they are applied in this paper, they will be able to suggest effective physical exercise options for different conditions as well as conditions for users.

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.

Optimization of Deep Learning Model Based on Genetic Algorithm for Facial Expression Recognition (얼굴 표정 인식을 위한 유전자 알고리즘 기반 심층학습 모델 최적화)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.85-92
    • /
    • 2020
  • Deep learning shows outstanding performance in image and video analysis, such as object classification, object detection and semantic segmentation. In this paper, it is analyzed that the performances of deep learning models can be affected by characteristics of train dataset. It is proposed as a method for selecting activation function and optimization algorithm of deep learning to classify facial expression. Classification performances are compared and analyzed by applying various algorithms of each component of deep learning model for CK+, MMI, and KDEF datasets. As results of simulation, it is shown that genetic algorithm can be an effective solution for optimizing components of deep learning model.