• Title/Summary/Keyword: dectin-1

Search Result 18, Processing Time 0.023 seconds

Immunological Features of Macrophages Induced by Various Morphological Structures of Candida albicans

  • Han, Kyoung-Hee;Park, Su Jung;Choi, Sun Ju;Park, Joo Young;Lee, Kyoung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.1031-1040
    • /
    • 2013
  • Candida albicans is a dimorphic fungus that commensally colonizes human mucosal surfaces. The aim of this study was to assess the role of different C. albicans morphologies in inducing pattern recognition receptors (PRRs) and cytokines in macrophages. Macrophages may respond to pathogen-associated molecular patterns via TLR2 and TLR4 by expressing cytokines. The hyphal transition of C. albicans was induced by 20% serum (S), RPMI-1640 (R), or $39^{\circ}C$ culture (H). Macrophages were then challenged with either yeast (Y) or different hyphae cultures of C. albicans, followed by RT-PCR and FACS analysis of PRRs expression. In addition, macrophages were stimulated with either yeast or different hyphae cultures of C. albicans used by RT-PCR and Bio-Plex analysis of cytokines production. Macrophages expressed high levels of TLR4 and dectin-1 after stimulation with Y cells. In contrast, stimulation with H or R cells strongly increased the expression of TLR2 and dectin-2. Stimulation with Y cells significantly enhanced the expression of IL-$1{\beta}$ and weakly increased the expression of IL-6 and IL-12. Stimulation with hyphal cells (S, R, and H) strongly increased IL-10 expression, but weakly reduced IL-$1{\beta}$ expression. The phagocytosis activity and NO production of macrophages were decreased upon treatment with hyphal cells compared with yeast, and depended on the length of hyphae. In summary, the yeast and hyphae forms of C. albicans resulted in an induction of different PRRs, with accompanying differences in immune cell cytokine profiles.

Pattern-Recognition Receptor Signaling Initiated From Extracellular, Membrane, and Cytoplasmic Space

  • Lee, Myeong Sup;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Invading pathogens are recognized by diverse germline-encoded pattern-recognition receptors (PRRs) which are distributed in three different cellular compartments: extracellular, membrane, and cytoplasmic. In mammals, the major extracellular PRRs such as complements may first encounter the invading pathogens and opsonize them for clearance by phagocytosis which is mediated by membrane-associated phagocytic receptors including complement receptors. The major membrane-associated PRRs, Toll-like receptors, recognize diverse pathogens and generate inflammatory signals to coordinate innate immune responses and shape adaptive immune responses. Furthemore, certain membrane-associated PRRs such as Dectin-1 can mediate phagocytosis and also induce inflammatory response. When these more forefront detection systems are avoided by the pathogens, cytoplasmic PRRs may play major roles. Cytoplasmic caspase-recruiting domain (CARD) helicases such as retinoic acid-inducible protein I (RIG-I)/melanoma differentiation-associated gene 5 (MDA5), mediate antiviral immunity by inducing the production of type I interferons. Certain members of nucleotide-binding oligomerization domain (NOD)-like receptors such as NALP3 present in the cytosol form inflammasomes to induce inflammatory responses upon ligand recognition. Thus, diverse families of PRRs coordinately mediate immune responses against diverse types of pathogens.

Immuno-Enhancing Effects through Macrophages of Polysaccharides Isolated from Citrus Peels (진피로부터 분리한 다당의 대식세포를 통한 면역증진 효과)

  • Lee, Kyung-Ae;Park, Hye-Ryung
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.441-448
    • /
    • 2021
  • This study was designed to investigate the intracellular signaling pathways and immunoenhancing effect of macrophage activation by crude polysaccharides (CPP) extracted from citrus peels. CPP did not affect the cytotoxicity of RAW264.7 cells, but showed dose-dependent effects on cell viability. Also, CPP showed high production of chemokine (nitric oxide (NO)) and cytokines (interleukin (IL)-6 and tumor necrosis factor (TNF)-α). CPP increased IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) mRNA expression dose-dependently. CPP also strongly induced the phosphorylation of the ERK, p38, and IκBα pathways in RAW 264.7 cells. In anti-pattern recognition receptors (PRRs) experiments, the effect of CPP on NO production was strongly suppressed by neutralizing toll-like receptor (TLR)2, TLR4, and Dectin1 antibodies, whereas IL-6 and TNF-α production by CPP was mainly suppressed by mannose receptor (MR). Therefore, these results suggest that CPP treatment-induced NO production was regulated by the ERK, p38, and NF-κB pathways through TLR2, TLR4, and Dectin1 receptors, whereas IL-6 and TNF-α production was primarily regulated by the ERK, p38, and NF-κB pathways through MR receptors.

Immunoenhancing Effects of Euglena gracilis on a Cyclophosphamide-Induced Immunosuppressive Mouse Model

  • Yang, Hyeonji;Choi, Kwanyong;Kim, Kyeong Jin;Park, Soo-yeon;Jeon, Jin-Young;Kim, Byung-Gon;Kim, Ji Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.228-237
    • /
    • 2022
  • In this study, the effects of the immune stimulator Euglena gracilis (Euglena) in cyclophosphamide (CCP)-induced immunocompromised mice were assessed. The key component β-1,3-glucan (paramylon) constitutes 50% of E. gracilis. Mice were orally administered Euglena powder (250 and 500 mg/kg body weight (B.W.)) or β-glucan powder (250 mg/kg B.W.) for 19 days. In a preliminary immunology experiment, ICR mice were intraperitoneally injected with 80 mg of CCP/kg B.W. during the final 3 consecutive days. In the main experiment, BALB/c mice were treated with CCP for the final 5 days. To evaluate the enhancing effects of Euglena on the immune system, mouse B.W., the spleen index, natural killer (NK) cell activity and mRNA expression in splenocytes lungs and livers were determined. To detect cytokine and receptor expression, splenocytes were treated with 5 ㎍/ml concanavalin A or 1 ㎍/ml lipopolysaccharide. The B.W. and spleen index were significantly increased and NK cell activity was slightly enhanced in all the experimental groups compared to the CCP-only group. In splenocytes, the gene expression levels of tumor necrosis factor-α, interferon-γ, interleukin (IL)-10, IL-6, and IL-12 receptor were increased in the E. gracilis and β-glucan groups compared to the CCP-only group, but there was no significant difference. Treatment with 500 mg of Euglena/kg B.W. significantly upregulated dectin-1 mRNA expression in the lung and liver compared to the CCP-only group. These results suggest that Euglena may enhance the immune system by strengthening innate immunity through immunosuppression.

Potentiation of Innate Immunity by β-Glucans

  • Seong, Su-Kyoung;Kim, Ha-Won
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.144-148
    • /
    • 2010
  • $\beta$-Glucans have been known to exhibit antitumor activities by potentiating host immunity by an unknown mechanism. The C-type lectin dectin-1, a $\beta$-glucan receptor, is found on the macrophage and can recognize various $\beta$-glucans. Previously, we demonstrated the presence of $\beta$-glucan receptor, dectin-1, on the Raw 264.7 cells as well as on murine mucosal organs, such as the thymus, the lung, and the spleen. In order to investigate immunopotentiation of innate immunity by $\beta$-glucan, we stimulated a murine macrophage Raw 264.7 cell line with $\beta$-glucans from Pleurotus ostreatus, Saccharomyces cerevisiae, and Laminaria digitata. Then, we analyzed cytokines such as tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6 by reverse transcription-polymerase chain reaction (RT-PCR). In addition we analyzed gene expression patterns in $\beta$-glucan-treated Raw 264.7 cells by applying total mRNA to cDNA microarray to investigate the expression of 7,000 known genes. When stimulated with $\beta$-glucans, the macrophage cells increased TNF-$\alpha$ expression. When co-stimulation of the cells with $\beta$-glucan and lipopolysaccharide (LPS), a synergy effect was observed by increased TNF-$\alpha$ expression. In IL-6 expression, any of the $\beta$-glucans tested could not induce IL-6 expression by itself. However, when co-stimulation occurred with $\beta$-glucan and LPS, the cells showed strong synergistic effects by increased IL-6 expression. Chip analysis showed that $\beta$-glucan of P. ostreatus increased gene expressions of immunomodulating gene families such as kinases, lectin associated genes and TNF-related genes in the macrophage cell line. Induction of TNF receptor expression by FACS analysis was synergized only when co-stimulated with $\beta$-glucan and LPS, not with $\beta$-glucan alone. From these data, $\beta$-glucan increased expressions of immunomodulating genes and showed synergistic effect with LPS.

Enzyme Hydrolysates of Ginseng Marc Polysaccharides Promote the Phagocytic Activity of Macrophages Via Activation of TLR2 and Mer Tyrosine Kinase

  • Seo, Jeong Yeon;Choi, Ji Won;Lee, Jae Yeon;Park, Young Shik;Park, Yong Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.860-873
    • /
    • 2018
  • Although ginseng marc is a by-product obtained during manufacturing of various commercial ginseng products and has been routinely discarded as a waste, it still contains considerable amounts of potential bioactive compounds, including saponins and polysaccharides. Previously, we reported that ginseng oligosaccharides derived from ginseng marc polysaccharides by enzymatic hydrolysis exert immunostimulatory activities in macrophages and these activated macrophages are in turn able to inhibit the growth of skin melanoma cells by inducing apoptosis. In the present study, a more detailed investigation of the immunostimulatory activity and underlying action mechanisms of an enzymatic hydrolysate (GEH) containing these oligosaccharides derived from ginseng marc polysaccharides was performed. The levels of proinflammatory cytokines and anti-inflammatory cytokines were measured in GEH-stimulated RAW264.7 macrophages using RT-PCR analysis and ELISA. The expression levels of Toll-like receptor 2 (TLR2) and TLR4, Dectin-1, and MerTK were measured by RT-PCR analysis or western blot analysis, and the phagocytic activities of GEH-challenged bone marrow-derived macrophages toward apoptotic Jurkat cells were assayed using fluorescence microscopy. GEH induced the production of both proinflammatory cytokines $TNF-{\alpha}$ and IL-6, and anti-inflammatory cytokine IL-10 in RAW 264.7 cells. The expression of the TLR2 and MerTK mRNAs was increased upon GEH treatment. Phagocytosis of apoptotic Jurkat cells was enhanced in GEH-treated macrophages. Based on the results, this enzymatic hydrolysate (GEH) containing oligosaccharides exerts immunostimulatory effects by maintaining the balance between M1 and M2 cytokines, facilitating macrophage activation and contributing to the efficient phagocytosis of apoptotic cells. Therefore, the GEH could be developed as value-added, health-beneficial food materials with immunostimulatory effects.

Molecular Mechanism of Macrophage Activation by Exopolysaccharides from Liquid Culture of Lentinus edodes

  • Lee, Ji-Yeon;Kim, Joo-Young;Lee, Yong-Gyu;Rhee, Man-Hee;Hong, Eock-Ki;Cho, Jae-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.355-364
    • /
    • 2008
  • Mushrooms are regarded as one of the well-known foods and biopharmaceutical materials with a great deal of interest. ${\beta}$-Glucan is the major component of mushrooms that displays various biological activities such as antidiabetic, anticancer, and antihyperlipidemic effects. In this study, we explored the molecular mechanism of its immunostimulatory potency in immune responses of macrophages, using exopolysaccharides prepared from liquid culture of Lentinus edodes. We found that fraction II (F-II), with large molecular weight protein polysaccharides, is able to strongly upregulate the phenotypic functions of macrophages such as phagocytic uptake, ROS/NO production, cytokine expression, and morphological changes. F-II triggered the nuclear translocation of NF-${\kappa}B$ and activated its upstream signaling cascades such as PI3K/Akt and MAPK pathways, as assessed by their phosphorylation levels. The function-blocking antibodies to dectin-1 and TLR-2, but not CR3, markedly suppressed F-II-mediated NO production. Therefore, our data suggest that mushroom-derived ${\beta}$-glucan may exert its immunostimulating potency via activation of multiple signaling pathways.

Macrophage and Anticancer Activities of Feed Additives on β-Glucan from Schizophyllum commune in Breast Cancer Cells (치마버섯균 유래의 베타글루칸에 대한 사료첨가제로서의 대식세포 기능 활성 및 유방암 세포주에서의 항암효능 효과)

  • Lee, Jin-Seok;Lee, Seung-Ho;Jang, Yong-Man;Lee, Jong-Dae;Lee, Byoung-Hee;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.949-955
    • /
    • 2011
  • [ ${\beta}$ ]Glucan is a polysaccharide expressed on the cell walls of fungi. It is known that ${\beta}$-glucan is recognized by a family of C-type lectin receptors, dectin-1, which is expressed mainly on myeloid immune cells, including macrophages, neutrophils and dendritic cells. Raw 264.7 cells were treated with ${\beta}$-glucan from Schizophyllum commune. ${\beta}$-Glucan was not cytotoxic up to 400 ${\mu}g$/mL as measured by MTT assay. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cells. Treatment with ${\beta}$-glucan for 24 hr significantly increased production of NO and TNF-${\alpha}$ compared with control groups (p<0.05), indicating activation of macrophages. To measure inhibition of breast cancer cell proliferation, MTT assay was performed in MDA-MB-231 cells. Cell viability was significantly decreased in the group treated with 400 ${\mu}g$/mL of ${\beta}$-glucan for 48 hr (p<0.05) compared to the control group. However, tumor volume was decreased in the groups administered 200 ${\mu}g$ of ${\beta}$-glucan/mouse compared to the control group. These results indicate that ${\beta}$-glucan inhibits breast cancer cell growth through the induction of apoptosis.