• Title/Summary/Keyword: decoupling 제어

Search Result 174, Processing Time 0.029 seconds

Application of Nonlinear Feedback Control to an Articulated Manipulator (수직다관절 매니퓰레이터에 대한 비선형 되먹임제어의 응용)

  • Y.S. Baek;C.I. Yang;H.S. Aum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.104-114
    • /
    • 1995
  • Mathematical models of industrial robots or manipulators are composed of highly nonlinear equations with nonlinear couplings between the variables of motions. These nonlin- earities were not considered important in the first stage that the working speed of the manipulator was not so fast, but the effect of nonlinear forces has become serious, as the working speed has been increased. So more improvement of performance cannot be expected by the control of manipulator using approximate linearization. As an approach for solving these problems, there is a method that eliminates nonlinear theory, which makes possible cecoupling of coupling terms and arbitrary arranging of poles is briefly introduced in this study. When the theory is applied to design the control law, its feasibility is examined whether the reasonable control results are obtained by simulating position, velocity, torque and tracing trajectory. The relations between the coefficients of the linearized differential equations and the maximum error and torque for the prescribed trajectory are also examined. Finally, the method for selecting the values for getting the most rapid and precise response within maximum torque of each drive is suggested in the choice of coefficients of characteristic equations which are obtained as a result of the control.

  • PDF

An Autonomous Blimp for the Wall Following Control

  • Oh, Seung-Yong;Roh, Chi-Won;Kang, Sung-Chul;Kim, Eun-Tai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1668-1672
    • /
    • 2005
  • This paper presents the wall following control of a small indoor airship (blimp). The purpose of the wall following control is that a blimp maintains its position and pose and flies along the wall. A blimp has great inertia and it is affected by temperature, atmospheric pressure, disturbance and air flow around blimp. In order to fly indoors, a volume of blimp should be small. The volume of a blimp becomes small then the buoyancy of a blimp should be smaller. Therefore, it is difficult to attach additional equipments on the blimp which are necessary to control blimp. For these reasons, it is difficult to control the pose and position of the blimp during the wall following. In our research, to cope with its defects, we developed new blimp. Generally, a blimp is controlled by using rudders and elevators, however our developed blimp has no rudders and elevators, and it has faster responses than general blimps. Our developed blimp is designed to smoothly follow the wall by using low-cost small ultra sonic sensors instead of high-cost sensors. Finally, the controller is designed to robustly control the pose and position of the blimp which could control in spite of arbitrary disturbance during the wall following, and the effectiveness of the controller is verified by experiment.

  • PDF

Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam (격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어)

  • Lee, Gun-You;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

A Study on the High Performance Speed Control of Induction Motor Using Self-Learning Fuzzy Controller (자기학습형 퍼지제어기에 의한 유도전동기 고성능 속도제어에 관한 연구)

  • Park, Y.M.;Kim, Y.C.;Kim, J.M.;Won, C.Y.;Kim, Y.R.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.505-508
    • /
    • 1997
  • In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of induction motor. For the torque control method, an indirect vector control scheme with slip calculation is used because of its stable characteristics regardless of speed. Motor input current is regulated by a current controlled voltage source PWM inverter using space voltage vector technique. Also, the scheme of current control fuzzy controller is synchronous reference frame with decoupling term. DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzz. control algorithm. An IPM is used to simplify hardware design.

  • PDF

A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus (직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.

State Feedback Control of PWM Current Source Converter and Inverter System (PWM 전류형 컨버터 및 인버터 시스템의 상태궤환 제어)

  • Ko, Sung-Beom;Lee, Dong-Choon;Ro, Chae-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.501-503
    • /
    • 1996
  • In this paper, a novel control strategy for PWM current source converter and inverter is proposed, applying a multivariable state feedback control. The PWM converter controls line current to be sinusoidal and make input power factor unity. In addition, the modulation index control of dc link current is carried out, which produces lower loss of switching devices. Since the voltage control of inverter output filter capacitor is performed a decoupling of the d-q current of the induction motor is well retained. With the proposed algorithm, both high dynamic responses and satisfactory static performance can obtained.

  • PDF

The optimal compensation gain algorithm using variable step for buck-type active power decoupling circuits (벅-타입 능동 전력 디커플링을 위한 가변 스텝을 적용한 최적 보상 이득 알고리즘)

  • Baek, Ki-Ho;Kim, Seung-Gwon;Park, Sung-Min
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.177-178
    • /
    • 2017
  • 본 논문에서는 벅-타입 능동 전력 디커플링 회로의 단순화된 제어 방법을 위한 가변 스텝을 적용한 최적 보상 이득 알고리즘을 제안한다. 고정 스텝을 사용한 기존의 최적 보상 이득 알고리즘보다 유동적인 보상 이득 변화를 통해 DC링크 전압 리플을 효과적으로 줄일 수 있다. 기존의 방법보다 최적 보상 이득을 추적하는 시간이 줄어들어 갑작스런 부하 변동이나 이상 상황에 빠른 대응이 가능하다. 벅-타입 능동 전력 디커플링 회로는 전류 불연속 모드로 동작하며, 전류 지령치는 DC링크 전류의 1차 리플 성분에 전류 이득을 유동적으로 보상하여 생성하기 때문에 모든 구간에서 효과적으로 DC링크의 전압 리플을 줄일 수 있고 빠른 대응이 가능하다. 제안하는 가변 스텝을 적용한 최적 보상 알고리즘의 효과는 MATLAB-Simulink 시뮬레이션을 통해 검증하였다.

  • PDF

Adaptive Hysteresis Band Current Control Independent of the Back EMFs (역기전력에 무관한 가변 히스테리시스 밴드 전류 제어)

  • Kim, Kyeong-Hwa;Cho, Kwan-Yuhl;Chung, Se-Kyo;Oh, Dong-Seong;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1172-1175
    • /
    • 1992
  • The conventional adaptive hysteresis band current control technique has disadvantages such that on-line calculation of the hysteresis band is very complex, therefore, the adaptive hysteresis band must be stored in the look-up table. In this paper, a new simplified adaptive hysteresis band current control technique with phase decoupling is presented. The adaptive band is independent of the back EMFs. Using this adaptive band and the phase decoupled current error, the modulation frequency is fixed at nearly constant and the PWM inverter has optimal switching pattern.

  • PDF

Design of a Surface-Mounted PMSM Current Controller Using Uncertainty Estimation with a PI Observer (PI 관측기의 불확실성 추정을 이용한 표면부착형 영구자석 동기기의 전류 제어기 설계)

  • Kim, In-Hyuk;Choi, Dae-Sik;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1011-1016
    • /
    • 2011
  • This paper presents a robust current controller for a surface-mounted permanent magnet synchronous motor(SPMSM) by using a PI observer. The decoupling PI(proportional-integral) controller combined with an additional feed-forward compensation has been used for the current controller. The classical feed-forward compensation using velocity information and system parameters is not expected to achieve a robust performance against parameter uncertainties. This paper has adopted a PI observer for the feed-forward compensation to cope with parameter uncertainties without using velocity information. A simple PI observer has been designed to compensate the disturbances that represent velocity coupled terms and parameter uncertainties. Experimental results as well as computer simulations with 630W SPMSM confirm that the proposed approach can deal with the effects of the disturbance and improve the control performance.

Cheap Control of Weakly Coupled Discrete System (정규섭동 이산시 시스템에 대한 Cheap 제어 적용)

  • Choi, Won-Ho;Kwon, Yo-Han;Kim, Beom-Soo;Lim, Myo-Teag
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.503-505
    • /
    • 1999
  • Linear cheap control problem is a special form of linear quadratic regulator problem in which a small parameter ${\varepsilon}^2$ is multiplied with the control term. The joint problem in which cheap control is applied to a weakly coupled discrete system has not been reported in the literature. In this paper, the high-gain problem and decoupling problem on discrete weakly coupled system are considered together. We derive Hamiltonian matrix when the cheap control is applied to a weakly coupled discrete system and use it in developing numerical formulations in the process of applying parallel algorithm to the system.

  • PDF