• Title/Summary/Keyword: decomposition catalyst

Search Result 384, Processing Time 0.03 seconds

Optimization of Thruster Catalyst Beds using Catalytic Decomposition Modeling of Hydrogen Peroxide (과산화수소 촉매분해 모델링을 이용한 추력기 촉매대 최적설계)

  • Jung, Sangwoo;Choi, Sukmin;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.746-752
    • /
    • 2017
  • High test hydrogen peroxide has been widely developed as green propellant for thrusters. Hydrogen peroxide is decomposed in the catalyst bed to produce the thrust. Catalyst bed design optimization is considered through existing model for catalyst beds. To verify the model, static firing tests were conducted under various conditions using a 100 N scale $H_2O_2$ monopropellant thruster. Temperature and pressure estimations from the model were well correlated to the experimental data. The model is used to obtain optimal design parameters by analyzing the catalyst capacity and pressure drop data for various simulated conditions. Catalyst beds can be optimized from the analysis of the catalyst capacity and pressure drop correlation through catalyst bed modeling.

  • PDF

Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄의 직접 열 분해에 의한 수소생산 연구)

  • Jung, Jae-Uk;Nam, Woo-Seok;Yun, Ki-Jun;Lee, Dong-Hyun;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.284-287
    • /
    • 2005
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2 - free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane decomposition reaction was carried out at the temperature range of $850-925^{\circ}C$, methane gas velocity of $1.0U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구)

  • Lee, Seung-Chul;Yoon, Yong-Hee;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.57-60
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_{2}$ - free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구)

  • Lee, Seung-Chul;Yoon, Yong-Hee;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.97-100
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2$ - free hydrogen . The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by TEM image.

  • PDF

Optimization of Ammonia Decomposition and Hydrogen Purification Process Focusing on Ammonia Decomposition Rate (암모니아 반응기의 분해 효율 최적화를 통한 암모니아 분해 및 수소 정제 공정 모델 연구)

  • DAEMYEONG CHO;JONGHWA PARK;DONSANG YU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.594-600
    • /
    • 2023
  • In this study, a process model and optimization design direction for a hydrogen production plant through ammonia decomposition are presented. If the reactor decomposition rate is designed to approach 100%, the amount of catalyst increases and the devices that make up the entire system also have a large design capacity. However, if the characteristics of the hydrogen regeneration process are reflected in the design of the reactor, it becomes possible to satisfy the total flow rate of fuel gas with the discharged tail gas flow rate. Analyzing the plant process simulation results, it was confirmed that when an appropriate decomposition rate is maintained in the reactor, the phenomenon of excess or shortage of fuel gas disappears. In addition, it became possible to reduce the amount of catalyst required and design the optimized capacity of the relevant processes.

Decomposition of Benzene by Dielectric Barrier Discharge (유전체 장벽 방전에 의한 벤젠의 분해)

  • Lee, Yong Hun;Lee, Jae-Ho;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.213-217
    • /
    • 2007
  • Decomposition of benzene and selectivity of byproducts were investigated by using Dielectric Barrier Discharge (DBD) at atmospheric pressure. In order to increase the decomposition rate and selectivity of byproducts, two types of catalysts, H-ZSM-5 and Na-Y, were optionally employed inside the reactor of the process. The decomposition efficiency of benzene was investigated on the DBD and DBD/catalyst systems at various processing parameters including discharge voltage, residence time, and concentration of benzene. The results showed that, compared with the DBD only, the catalyst-assisted DBD process as a hybrid discharge type had an improved decomposition efficiency at the same process conditions of discharge voltage and residence time

A Study on Oxidative Decomposition of CFC-113 over TiO2-SiO2 Catalysts Prepared by the Sol-Gel Method (솔-젤법으로 제조된 TiO2-SiO2 촉매상에서 CFC-113의 산화분해반응에 관한 연구)

  • Chang, Won-Chul;Lee, Doo-Hyoung;Lee, Tae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.963-968
    • /
    • 1999
  • The global environmental problems have been caused by the release of CFCs. Therefore, methods for safe destruction of recoverd CFCs will be eventually needed. The objective of this study was to develop and test a catalyst operating at a mild condition for the decomposition of CFC-113. In this work, catalytic oxidative decomposition of CFC-113 was carried out over aerosol $TiO_2/SiO_2(ATS)$ catalysts prepared by the sol-gel method. All ATS catalysts(Ti/Si mol ratio=1, 2, 2.33, 4) showed high initial activity. However, the deactivation of ATS catalysts was found that more remarkable due to an attack of fluorine and the destruction of ATS structure(Si-F reaction) from analyses of SEM-EDX, XRD than $TiO_2/SiO_2(ATS)$ catalyst prepared by the precipitation method. ATS catalysts prepared by more acidic prehydrolysis condition were found to have still more activity and longer life-time by increasing of acidity. The activity of ATS catalyst also depend on the content of $TiO_2$. There was reason that the acidity of the ATS catalyst was increased with the increased content of $TiO_2$ from 50 to 80 mol %. Solid superacid catalyst ($ATX/SO_4{^{2-}}$) modified with $H_2SO_4$ solution was prepared for high activity and lower deactivation. The reaction of $ATS/SO_4{^{2-}}$ catalyst also exhibited even higher activity and lower deactivation than the original ATS catalyst. It is suggested that the addition of the sulphate species clearly inhibit the deactivation.

  • PDF

Electrical Discharge Plasma in a Porous Ceramic Membrane-supported Catalyst for the Decomposition of a Volatile Organic Compound (다공질 세라믹지지 촉매 상에서의 플라즈마 방전을 이용한 휘발성유기화합물의 분해)

  • Jo, Jin-Oh;Lee, Sang Baek;Jang, Dong Lyong;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.433-437
    • /
    • 2013
  • Electrical discharge plasma created in a multi-channel porous ceramic membrane-supported catalyst was applied to the decomposition of a volatile organic compound (VOC). For the purpose of improving the oxidation capability, the ceramic membrane used as a low-pressure drop catalyst support was loaded with zinc oxide photocatalyst by the incipient wetness impregnation method. Alternating current-driven discharge plasma was created inside the porous ceramic membrane to produce reactive species such as radicals, ozone, ions and excited molecules available for the decomposition of VOC. As the voltage supplied to the reactor increased, the plasma discharge gradually propagated in the radial direction, creating an uniform plasma in the entire ceramic membrane above a certain voltage. Ethylene was used as a model VOC. The ethylene decomposition efficiency was examined with experimental variables such as the specific energy density, inlet ethylene concentration and zinc oxide loading. When compared at the identical energy density, the decomposition efficiency obtained with the zinc oxide-loaded ceramic membrane was substantially higher than that of the bare membrane case. Both nitrogen and oxygen played an important role in initiating the decomposition of ethylene. The rate of the decomposition is governed by the quantity of reactive species generated by the plasma, and a strong dependence of the decomposition efficiency on the initial concentration was observed.

The Direct Decomposition of Ion-Exchange Resins by Fenton's Reagent (펜톤시약에 의한 이온교환수지의 직접산화분해)

  • Kim, Kil-Jeong;Shon, Jong-Sik;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.221-227
    • /
    • 2007
  • Fenton's reagent is applied to directly decompose the ion-exchange resins, IRN-78 and the mixed resin with IRN-77. The newly applied procedures is to dry the resin first and the catalyst solution is completely absorbed into the resin, then a limited dose of $H_2O_2$ is introduced for an effective reaction between the reagents within the resin. As a characteristic on the decomposition of IRN-78, the resin mixture should be heated to $40^{\circ}C$ to induce the initial reaction and lag time is also needed for about 20 minutes until the main reaction occurs. The effectiveness of the decomposition is investigated using $CuSO_4,\;Cu(NO_3)_2\;and\;FeSO_4$ as a catalyst and the decomposition rate is compared depending on the concentration of each catalyst and the amount of $H_2O_2$. The most effective catalyst was found to be $FeSO_4$ for IRN-78 alone and the mixed resin with IRN-77, and $FeSO_4$ showed a special effect that the reaction was initiated without heating and a lag time. Furthermore, the optimum concentration of the catalyst for each resin and the mixed one is suggested in the view point of the amount of $H_2O_2$ needed and the stability of the decomposition reaction.

  • PDF

The Analysis Method for Evaluation of Phosphoric Acid Poisioning of Pt Based Catalyst by Using Hydrogen Peroxide Decomposition Reaction (과산화수소 분해반응을 이용한 Pt계 촉매의 인산피독 특성 평가 방법)

  • PARK, JEONGJIN;YANG, SEUNGWON;CHUNG, ONGJIN;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.669-674
    • /
    • 2017
  • In this study, the novel electrochemical and colorimetric analysis methods are suggested to estimate the degree of phosphoric acid ion poisoning on Pt based catalyst surface and to confirm the possibility of replacing the expensive and long time consumed conventional methods. As the ways, the electrochemical half cell tests such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV) are used and the change in chemical behavior by absorption of the phosphoric acid ion on Pt based catalyst surface and hydrogen peroxide decomposition reaction are successfully recognized by colorimetric measurements. Conclusively, it is proved that the new methods show superior sensitivity for identifying the degree of phosphoric acid poisoned on Pt based catalyst.